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Summary

Continuous Fibre Reinforced Polymers (CFRPs) combine strength and
stiffness of fibres with the design flexibility of polymeric matrix materials.
Fast production methods like thermo-folding, diaphragm forming or stamping
can produce large numbers of CFRP components in a cost efficient way.
Pre-consolidated laminates are heated above their melting temperature and
subsequently re-shaped. These forming processes can introduce unacceptable
shape distortions such as springback, wrinkling or tearing.

The objective of this research is the development of a design tool for high
precision CFRP components made from multi-layer laminates. Optimisation
of the CFRP design and the forming process reduces costly trial-and-error
procedures and can significantly shorten the time-to-market. This requires a
predictive model that is robust, accurate and fast. Such an all-encompassing
procedure is not readily available.

Forming processes of single-layer and multi-layer composite materials have
been successfully simulated using the Finite Element (FE) method. A
new non-linear FE formulation was developed to accurately simulate large
deformations of highly anisotropic materials, for which the traditional FE
formulations appeared to be inadequate. An appropriate decomposition of the
deformation gradient results in constitutive equations formulated in invariant
tensors. Consistent tangent matrices were derived for general anisotropic,
elastic materials and plastically deforming fibres. Multiple two and three
dimensional analyses showed quadratic convergence for simulations with large
strain increments and large rotations.

Intra-ply shear locking is a numerical artefact that can deteriorate the
simulation results. Several solutions to this problem were implemented in
various element types. They were tested in a two dimensional simulation
of a bias extension experiment and a three dimensional realistic drape
simulation. Selective reduced integration is a straightforward solution to
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eliminate locking, but compromises performance of simulations with large
deformations. Therefore an assumed strain element has been developed. This
element contains additional degrees of freedom that represent the fibre strain
field. It was demonstrated that the new element performs significantly better
than other solutions.

A multi-layer element has been developed for efficient simulations of
laminated composite forming processes with only one element through the
thickness. Simulations were validated against drape experiments, in which
multi-layered pre-consolidated laminates of different lay-ups were formed on
a dome geometry. The experiments emphasised the importance of inter-
ply interactions during forming of laminated composites. Simulations and
experiments agree very well up to the point at which wrinkling starts.
Membrane elements were used for simulation time arguments. They proved
capable of predicting the material instabilities during forming, but are unsuited
for realistic wrinkling simulations due to the lack of a bending stiffness. Several
strategies are discussed as to how the simulations can be used as an effective
and predictive tool during the optimisation of layered CFRP products.



Samenvatting

Continue-vezelversterkte polymeren combineren de sterkte en stijfheid
van vezels met de ontwerpvrijheid van polymere matrixmaterialen.
Deze composieten zijn geschikt voor economisch aantrekkelijke, snelle
productiemethoden zoals thermovouwen, membraanvormen of persen. Bij
deze methoden worden voorgeconsolideerde laminaten tot boven de
smelttemperatuur verhit en vervolgens vormgegeven. Hierbij kunnen
echter ongewenste en onacceptabele vervormingen optreden, waarvan
maatonnauwkeurigheid, plooivorming en scheurvorming enkele voorbeelden
zijn.

Het doel van dit onderzoek is de ontwikkeling van een ontwerpgereedschap
voor het maatnauwkeurig produceren van meerlaagse composietproducten.
Optimalisatie van het ontwerp en het productieproces met behulp van dit
ontwerpgereedschap reduceert kostbare trial-and-error-procedures en kan de
time-to-market aanzienlijk verkorten. Voor een dergelijk gereedschap is een
voorspellend model nodig, dat tegelijkertijd robuust, nauwkeurig en efficiënt is
qua rekentijd. Momenteel is er geen model beschikbaar dat aan al deze eisen
voldoet.

Binnen dit onderzoek is de productie van enkel- en meerlaagse composieten
succesvol gesimuleerd met behulp van de eindige-elementenmethode.
Conventionele eindige-elementenformuleringen bleken ongeschikt om grote
vervormingen van zeer anisotrope materialen nauwkeurig te simuleren.
Daarom is er een nieuwe niet-lineaire formulering opgezet, waarbij een
geschikte ontbinding van de vervormingstensor resulteert in constitutieve
vergelijkingen die uitgedrukt kunnen worden in invariante tensoren. De
consistente tangentmatrices voor algemeen anisotroop elastisch materiaal,
elastisch vervormende vezels en elastoplastisch vervormende vezels zijn
opgesteld. Meerdere twee- en driedimensionale simulaties met grote
vervormingen en rotaties toonden aan dat het convergentiegedrag kwadratisch
is, waarmee de consistentie van de tangentmatrices is aangetoond.
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Intra-ply shear locking is een numeriek probleem dat de resultaten van
simulaties met vezelversterkte materialen onbruikbaar kan maken. Een aantal
oplossingen voor dit probleem zijn gëımplementeerd in verschillende typen
elementen. Deze oplossingen zijn getest in een tweedimensionale simulatie
van het bias extension experiment en in een realistische driedimensionale
drapeersimulatie. Hieruit is gebleken dat selectieve gereduceerde integratie
een eenvoudige methode is om locking the voorkomen. Het verlaagde
echter de convergentiesnelheid van simulaties met grote vervormingen. Deze
tekortkoming is opgelost door de onwikkeling van een assumed strain element,
een element waarin randvoorwaarden betreffende het rekveld expliciet zijn
vastgelegd. Het element bevat extra vrijheidsgraden die de rek in de vezels
vastleggen. Uit simulaties bleek dat het nieuwe assumed strain element
sneller convergeert en robuuster is dan het element met selectieve gereduceerde
integratie.

Er is een element ontwikkeld dat de respons kan simuleren van een
laminaat dat bestaat uit meerdere lagen, waarbij wrijving tussen de
verschillende lagen meegenomen wordt. Op deze manier kan de vervorming
van een meerlaagscomposiet efficiënt worden gesimuleerd met slechts één
enkel element over de dikte. Er zijn simulaties uitgevoerd met meerlaagse
composieten van verschillende opbouw, die op een bolvormige geometrie
gedrapeerd werden. Deze simulaties zijn geverifieerd met experimenten.
Deze experimenten benadrukten dat de wrijving tussen de individuele lagen
van het laminaat tijdens de productie in hoge mate kan bijdragen aan de
ongewenste vervormingen in het uiteindelijke product. De resultaten van de
simulaties en de experimenten kwamen goed overeen tot het punt waarop
plooivorming in het product ontstond. De simulaties maakten gebruik van
membraanelementen om de simulatietijd te beperken. Deze elementen bleken
in staat om het begin van materiaalinstabiliteiten te voorspellen, maar door
hun gebrek aan buigstijfheid waren ze niet geschikt voor realistische simulaties
van plooivorming. Enkele strategien zijn uitgewerkt om de voorspellende
kwaliteiten van dit meerlaagse element efficiënt in te zetten tijdens de
optimalisatie van meerlaagse composietproducten.



Nomenclature

List of abbreviations and symbols used.

Abbreviations

ALE Arbitrary Lagrangian Eulerian
CFRP Continuous Fibre Reinforced Polymer
CFRTP Continuous Fibre Reinforced ThermoPlastics
(C)MF (Constant) Multi-Field
CP Cross-Ply
DOF, dof Degree Of Freedom
DRIL Allmann88 triangle with DRILling dofs
FE(M) Finite Element (Method)
FLD Forming Limit Diagram
H Harness weave
LTR Linear/simplex TRiangular element
PPS PolyPhenylene Sulfide
QI Quasi-Isotropic
QUAD QUADrilateral element
RPF Rubber Press Forming
(S)QTR (Semi) Quadratic TRiangular element
(S)RI (Selective) Reduced Integration
XFEM Extended Finite Element Method

Scalars

C Mooney-Rivlin material parameters
E Young’s modulus
h film thickness
I invariants of the left Cauchy strain tensor
J Jacobian, volume ratio
�, L length



x Nomenclature

p hydrostatic pressure
q scalar weight function
R radius
r constraint ratio
S principal stress
t time
u, v, w displacement in x, y, z-direction
V volume
Γ surface area
γ shear deformation
δ increment
ε error norm, convergence criterion
ε strain
η viscosity
η0, C, n Cross model parameters
λ contraction ratio
ν volume fraction
ρ density
σ0, C, ε0, n Nadai stress-strain curve parameters
σ stress
ψ free energy

Vectors

a fibre direction
e base vector
n normal vector
t boundary traction
u displacement
v velocity
w vector of weight functions
X Lagrangian vector
x Eulerian vector
τ interface traction

Tensors

B left Cauchy-Green strain
C right Cauchy-Green strain
D rate of deformation



Nomenclature xi

d invariant rate of deformation
4E fourth order material tensor
F deformation gradient
G stretch tensor
I second order unit tensor
4I fourth order unit tensor
L velocity gradient
Lg adapted velocity gradient
R rotation tensor
W spin tensor from polar decomposition
σ Cauchy stress
τ local stress
Ω general spin tensor

Vector / Matrix notated

{ε} strain tensor in compressed or Voigt notation
[B] derivatives of the element shape functions
F, R force vector
N, M vector element interpolation functions
[K] tangent/stiffness matrix

Subscripts

0 initial/reference value
e elastic
f in the fibre direction
p plastic
y yield
xyz cartesian coordinates

Superscripts

k nodal index
d deviatoric part



xii Nomenclature

Mathematical
→
∇ pre-gradient, e.g. A =

→
∇b aij = bj,i←

∇ post-gradient, e.g. A = b
←
∇ aij = bi,j

·
←
∇ divergence, e.g. a = B ·

←
∇ ai = bij,j

· contraction, inner product, e.g. A = B ·C aij = bikckj

(default) dyadic product, e.g. A = bc aij = bicj
: double contraction, e.g. a = B : C a = bijcij
× cross product a = b× c ai = εijkbjck
AT transpose
Ȧ time derivative
� difference
∂ partial differentiator
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Chapter 1

Introduction

Continuous Fibre Reinforced Polymers (CFRPs) consist of strong and stiff
continuous fibres embedded in a polymeric matrix material. The primary
function of the fibres is to improve the mechanical properties of the matrix
material. CFRPs made of glass, carbon or aramid fibres are widely used and
well known, but for some typical applications less common reinforcements are
used. This includes for example the use of steel cords as reinforcement in
plastic oil-pipes, natural fibres for bio-degradable products or highly oriented
thermoplastics like Dyneema� for bullet proof vests. Together with a wide
variety of matrix materials, this leads to numerous material combinations,
which are typically stiff, strong, corrosion resistant and have good fatigue
properties. An example of a project that would have been impossible without
modern CFRPs is shown in figure 1.1. SpaceShipOne was the first private
spaceship that flew out of the atmosphere in 2004.

Figure 1.1: SpaceShipOne on its way to space, a project impossible without
CFRPs. Photo by Scaled Composites.
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Figure 1.2: Several types of continuous fibre reinforcements. From left to right
a unidirectional prepreg, a braid, a woven fabric and a non crimp fabric.

1.1 CFRP production

Perhaps one of the most important advantage in designing CFRP components
is the design flexibility. The polymer matrix material can be shaped arbitrarily.
Thermoset polymers can be moulded only once, while thermoplastic polymers
can be re-heated and re-moulded multiple times until the level of degradation
is unacceptable. The ability of thermoplastics to melt allows for fast and
cost efficient production methods. It makes products suitable for recycling
as well, an increasingly important aspect nowadays. Thermoset polymers are
generally slightly stronger and better suited for high temperature use than
thermoplastics.

Well designed CFRPs have a high stiffness to weight ratio, making them
suitable for structural aircraft components. Primarily glass and carbon fibres
are used for this application. Processes like filament winding are capable of
processing individual yarns on their own, but generally fibres are arranged in a
sheet form to make handling possible. Figure 1.2 shows four examples of these
sheet forms. Prepreg is a combination of yarns and a yet uncured thermoset
matrix. The braids and fabrics consist of dry yarns.

The initially planar material is formed into a final three dimensional shape
during forming. When this shape is doubly curved, a stiff product is created
by exploiting the high membrane stiffness of the material. Three strategies
are followed. The first strategy involves the manual layup of prepreg material
followed by an autoclave cycle. This conventional method has long been the
standard in aerospace industry. The second strategy is to deposit the dry
reinforcement in a mould, followed by the addition of a thermoset resin. Dry
fabrics, which are pre-shaped to the mould geometry before impregnation,
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A340 A380

J-nose

CFRP stiffner rib

Figure 1.3: CFRP stiffner ribs in the J-nose of the Airbus A340 and A380.

are known as preforms. Production processes such as hand lay-up, vacuum
infusion or resin transfer moulding follow this strategy. The third strategy is
to create a pre-consolidated flat laminate first, by using a thermoplastic matrix
material. This laminate is then reheated and when the matrix material has
melted, it is formed into the final three dimensional shape. Typical examples
of this production strategy are thermo-folding, diaphragm forming and rubber
pressing. These fast methods can produce large numbers of composite
products in a cost efficient way, without compromising the structural strength
and will contribute to the growing use of composites in the aerospace industry
[1].

Currently, new promising methods like fibre placing are under development
as well. Though this is a costly process, it produces components with very
good mechanical properties and increases the design flexibility even further by
allowing full control of the fibre deposition.

The research in this thesis focusses on the rapid production methods of
multi-layer pre-consolidated laminates. A typical product resulting from these
processes is the stiffner rib shown in figure 1.3. It is produced by Stork Fokker
AESP using the rubber pressing process. The thin-walled stiffner rib consists
of four layers of thermoplastic material, reinforced with a woven glass fibre
fabric. It is produced by first heating a pre-consolidated laminate, followed
by a press cycle in which the laminate is formed between a steel mould and a
rubber counterpart.
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(re-) design

production product optimised product

wrinkle

satisfied

not satisfied

Figure 1.4: Iterative optimisation cycle of a product.

1.2 Product optimisation

Manufacturing processes can lead to unacceptable shape distortions in CFRP
products. The thin walled products exhibiting double curvature are especially
susceptible to springback, wrinkling or inefficient fibre distribution upon
forming. These distortions depend on a wide variety of parameters, like e.g.
the geometry, material properties, lay-up, process temperatures and friction.
Redesign of the product or production process is necessary until the end result
is satisfactory, as schematically illustrated in figure 1.4.

Optimisation through a trial and error procedure usually results in an
acceptable product, but it is always accompanied by additional labour costs,
machine time and scrap products. Numerical tools that can simulate the
production processes can help the designer to optimise the product in the
design phase and ideally lead to a first-time-right production cycle. These
optimisations require a robust, accurate and yet fast numerical procedure,
which is not readily available for anisotropic, multi-layered materials like
CFRPs.

1.3 Deformation mechanisms of CFRPs

The mechanical behaviour of continuous fibre reinforced materials differs
significantly from other materials by the presence of the fibres with their
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fibre loading intra-ply shear

Figure 1.5: Primary intra-ply deformation mechanisms.

tool-ply slip ply-ply slip

laminate bending compaction

Figure 1.6: Inter-ply and out-of-plane deformation mechanisms.

dominant stiffness. Figure 1.5 shows the two most important in-plane
deformation mechanisms of a biaxial woven fabric. The first one is fibre
loading, shown at the left hand side of the figure. The initial stiffness of
the tows under tensile loading can be low due to their waviness. Once
fully stretched, elongation of the fibres is often negligible compared to other
deformation mechanisms.

The second mechanism, intra-ply shear, is the primary deformation mode
when forming biaxial fabrics into doubly curved shapes. This mode is also
referred to as the trellis mode. Parallel fibres rotate with each fibre crossing
acting as a hinge point. The response of the laminate in shear will be rate and
temperature dependent if the fabric has been impregnated. When sheared,
inter-tow compaction occurs due to the decrease in surface area and the
deformation will get blocked at a certain shear angle, the locking angle. Two
widely used experimental methods to examine the shear behaviour of biaxial
fabrics are the bias extension and the picture frame test. Details on these test
methods can be found in [2].
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Figure 1.6 shows four deformation mechanisms that are important besides
the intra-ply mechanisms. Tool-ply and ply-ply friction is often a combination
of dry and lubricated friction. Friction transfers the external loads into the
material and can cause wrinkling or fibre buckling in internal plies or in
the laminate as a whole. The bending stiffness of thin laminates is often
negligible compared to the membrane stiffness. When the number of plies
increases, the influence of the bending stiffness during forming can become
significant. Compaction of the plies is important in the consolidation phase of
the production process. Poor compaction causes voids between the individual
plies and this results in inferior mechanical behaviour. Again, details on these
deformation mechanisms and experimental methods to analyse these can be
found in [2].

1.4 Forming simulations

There are two main approaches to composite forming simulations: the
geometrical approach and the Finite Element (FE) approach. The geometrical
or mapping algorithms date back to the 1950s, when Mack and Taylor
predicted the fibre distribution of a woven cloth on simple geometries based
on a pin jointed net assumption [3]. One chooses a starting point and two
initial fibre directions on the product surface. The position of the next fibre
crossing is found by solving a local geodesic problem, assuming that the
fibres are inextensible and shear is the only deformation mechanism. This
process continues until the complete geometry has been covered. These simple
geometrical models are fast, with simulation times in the order of seconds and
are often sufficient for preliminary design studies.

Finite element simulations are based on solving equilibrium for the complete
structure, rather than using a simple mapping algorithm. They are capable
of simulating the production process in great detail by including e.g. complex
material models and boundary conditions such as tool-part friction. Simple FE
simulations are still relatively fast with simulation times of several minutes,
but this number increases significantly if more complexities are added. A
full three dimensional pressing simulation of a multi-layer CFRP product
including friction can take a few hours up to days. These complex simulation
are sometimes inevitable for an accurate prediction of the shape distortions
in CFRP products as illustrated in the next example. Figure 1.7 shows a
schematic representation of the rubber pressing process used to create a z-
profile.
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Figure 1.7: The rubber pressing process.
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Figure 1.8: Process induced transverse shear and slip in a laminated composite
[5].

After heating, the pre-consolidated laminate is formed between a rubber
female mould and a steel male mould. The steel mould rapidly cools down the
laminate and the product is removed after a consolidation period of minutes.
The closing of the moulds introduces transverse shear and slip between the
different layers of the laminate as illustrated in figure 1.7. Research by
Lamers [4] and Wijskamp [5] showed that inter-ply and the tool-ply friction
can introduce significant residual stresses upon forming, causing severe shape
distortions of the final product. Figure 1.8 shows a picture of a cross-section
of a laminate after forming, as seen with a microscope. The raw material was
cut from a pre-consolidated laminate and the layers were consequently aligned
at the right hand side before forming. Transverse shear of the laminate and
slip between the layers has occurred upon forming, as is clearly visible in the
figure. The top layer has moved around 2 mm with respect to the bottom
layer. The finite element method is most suited for accurate simulations of
these phenomena. Geometric draping analyses are not eligible, since the effects
of inter-ply and tool-ply interactions cannot be included.
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1.5 Finite element modelling

One of the earliest elastic finite element models was applied by Chen and
Govindaraj in the 1990s [6]. They simulated the draping of a woven cloth on
a table, considering the fabric a continuous, orthotropic medium. Although
fabrics are discontinuous at lower length scales, the continuous approach has
proven to be successful in many forming simulations. Special attention should
be given to the constitutive equations, as the fibre directions change upon
forming. The stiffness of the fibres is dominant and their orientation should be
followed accurately. A continuum description of the reinforced material allows
for implementation in standard, commercial FE packages. Many continuum
models of fibre reinforced composites were successfully implemented using the
user subroutines available in Abaqus c© [7–10].

Reinforcements can also be included in FE models by adding bar or truss
elements to standard continuum elements. The mechanical behaviour of the
(often isotropic) matrix material is modelled by the continuum elements and
the response of the fibres by the truss elements. This approach has been used
by several researchers [11, 12] and was implemented as a standard option in
the commercial FE programs Abaqus c© and Msc Marc c©. Modelling each
individual yarn as a discrete element is computationally too expensive for
forming simulations of fibre reinforced materials. This approach is limited
to the microscale range, where it can provide information of e.g. the local
compaction behaviour [13, 14].

Finite element forming simulations of single layer reinforced composites
gradually become common nowadays, even in commercial environments. This
is mainly due to the increased understanding of the material deformation
mechanisms and the simulation techniques. The increase in computational
power of modern computers is an important factor as well, making the complex
and time-consuming simulations commercially more attractive. However,
forming simulations of multi-layer composites including tool-ply and ply-
ply slip are still in a research stage. Stacking several plies with contact
logic and an appropriate friction characterisation between each layer is a
straightforward method to model these materials. This approach causes
the FE model to grow rapidly and in combination with the computationally
expensive contact logic, it slows down the simulation to unacceptable levels.
Some researchers successfully simulated the forming of a multi-layer composite
with this approach on a small scale [15].
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Modelling the multi-layer laminate with one element through the thickness
is computationally more attractive than modelling the separate layers
individually. Contact logic between the layers is avoided, which saves time
and avoids instabilities. Lamers [4] developed a triangular membrane element
that contains multiple layers, but having only nine degrees of freedom for each
configuration. These degrees of freedom represent the global displacement of
the laminate and the displacement of the individual layers is solved locally by
an energy minimisation algorithm. This method proved to be fast in multi-
layer simulations, but failed to accurately capture the tool-ply interaction, as
shown by Wijskamp [5]. Wijskamp proposed to use global degrees of freedom
in at least the top and bottom layer of the element to improve the accuracy
of the tool-ply interaction. This will improve the simulation results of the
important transverse effects, which are shown in figure 1.8.

1.6 Objective

The objective of this research is to develop a design tool that assists the
designer in optimising the design and production of laminated composites,
made from multi-layer laminates or preforms. Shape distortions in the final
product can be minimised by adjusting the design of the product or by
correction of tool geometries beforehand. This requires a predictive model
that is both numerically efficient and accurate.

1.7 Outline

Simply implementing a highly anisotropic material model in a standard finite
element code is not always successful. Large deformation FE simulations
of highly anisotropic materials often show slow convergence or break down
with increasing anisotropy and deformation. Chapter two describes a
conceptually simple method, which makes the implementation of anisotropic
material models straightforward. The method proved to be robust, accurate
and provides quadratic convergence, even in simulations including plastic
deformation of the fibres.

Intra-ply shear locking is a numerical problem. Standard elements
have continuous displacement fields and cannot represent intra-ply shear
deformation within the element. This causes unrealistically high fibre stresses
and spurious wrinkling. Locking can be avoided by aligning the meshes with
the fibre directions. Since this solution is only possible up to a maximum of two
fibre directions per element, it is useless for multi-layer elements. Alternate
solutions to this problem are presented in chapter three.
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Chapter 2
Robust and accurate simulations
of highly anisotropic materials
in a single ply

Chapter 3
Solutions to the intra-ply shear
locking problem for single
ply random meshes

Chapter 4
Efficient simulations of a multi-
layer composite including ply-ply
friction and tool-ply contact

Figure 1.9: Outline of this thesis.

In chapter four a multi-layer element is presented that includes the solutions
given in chapter two and three. Each layer has been modelled according to the
method presented in chapter two and the numerical locking problem was solved
as described in chapter three. The separate plys of a laminate were modelled
with one element through the thickness, avoiding computationally expensive
contact logic and the associated instabilities. The element includes ply-ply
friction and tool-ply contact. The results of a rubber pressing simulation of a
laminated composite were validated against experiments.

Chapters two, three and four were submitted as scientific publications to
journals. Therefore, a slight overlap exists of some of the topics covered in
the introductory parts. An interconnecting summary of the conclusions and
recommendations for further research are presented in chapter five.

The article-based structure of the thesis limits the space for the elucidation
of formulas or ideas. Therefore, the appendices present a detailed look
into the finite element formulations of the most important material models
and boundary conditions that were used within this research. Attention
has been payed to the derivation of consistent tangent matrices, since these
significantly improve convergence speed and hence simulation times of implicit
finite element simulations.
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Chapter 2

Large deformation simulation
of anisotropic material using
an updated Lagrangian finite
element method∗

Abstract

Large deformation Finite Element (FE) simulations of anisotropic material
often show slow convergence or break down with increasing anisotropy and
deformation. Large deformations are generally approximated by multiple
small linearised steps. This leads to poor performance and contradicting
formulations. Here, a new conceptually simple scheme was implemented
in an updated Lagrange formulation. An appropriate decomposition of the
deformation gradient results in constitutive relations defined in invariant
tensors. Consistent tangent matrices are given for a linearly elastic fibre
model and for a generalised anisotropic material. The simulations are
robust, showing quadratic convergence for arbitrary degrees of anisotropy and
arbitrary deformations with strain increments over 100%. Plasticity of the
fibres is included without compromising the rate of convergence.

∗This chapter has been published as: R.H.W. ten Thije, R. Akkerman and J. Huétink.
Large deformation simulation of anisotropic material using an updated Lagrangian finite
element method. Computer Methods in Applied Mechanics and Engineering, Volume 196,
Issues 33-34, July 2007, Pages 3141-3150, with R.H.W. ten Thije as the principal author.
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2.1 Introduction

Numerical optimization of products and production processes becomes
increasingly important in the design phase of composite structures. It
can reduce the time to market and can avoid the production of costly
prototypes. Numerical simulations of the composite forming processes such
as e.g. draping, rubber pressing or diaphragm forming are an essential
part of these optimization tools if doubly curved products are considered.
Redistribution of the fibres is then inevitable. The resulting fibre orientation is
one of the most important parameters to control. These numerical simulations
can also reveal problem areas where wrinkling or fibre buckling might occur.

There are two main approaches in composite forming simulations: the
geometrical approach and the Finite Element (FE) approach. The fast and
simple geometrical models are often sufficient for design purposes and date
back to the fifties of the past century, where Mack and Taylor predicted the
fibre distribution of a woven cloth on simple geometries based on a pin jointed
net assumption [1]. Increasingly sophisticated models have been built ever
since [2–4] and recently even interactive tools that allow the user to virtually
manipulate woven fabrics have been developed [5].

FE simulations are capable of simulating the production process in great
detail, including mechanisms such as tool-part friction, inter-ply friction,
wrinkling and fibre bridging. One of the earliest elastic models was applied
by Chen and Govindaraj in the mid nineties of the past century [6]. These
FE simulations are however time consuming and often not very robust. Large
deformation FE simulations of highly anisotropic material often show slow
convergence or break down with increasing anisotropy and deformation.

The scale of anisotropy in metals is of a different order of magnitude
compared to fibre reinforced composites, but recent developments point to
the same imperfections in standard FE formulations in this field as well.
Inclusion of yielding and plastic flow of anisotropic metals according to the Hill,
Vegter or Barlat criteria [7–9] is a standard option in FE packages nowadays.
Extension to large deformations and strains is however not straightforward.
Bonet and Burton illustrated that the standard FE formulations are only
valid for small or moderate strains [10]. Standard theories are based on
the additive decomposition of the linear strain tensor, which can add up to
significant deviations if the simulation is split into multiple steps. Inclusion
of anisotropy is only straightforward if the additive structure is preserved
according to Sansour and Bocko [11]. A formulation along this line can be
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found in the work of Lu an Papadopoulos [12], who proposed a covariant
formulation of anisotropic plasticity to circumvent problems associated with
intermediate configurations that typically result from the small strain theory.
It is worth noting at this point that the shortcomings of the small strain theory
are independent of the fact that the material is anisotropic, but anisotropy
makes the need for accurate descriptions at high strains more eminent or even
inevitable.

Nedjar [13–15] and Huétink [16] proposed the use of multiplicative splits of
the deformation tensors, which do not necessarily have to be equal for each
material fraction. Huétink illustrated the straightforward implementation of
fibrous materials in FE simulations by splitting the deformation tensor into a
rotation part and a stretch part for each fibre fraction. Anisotropic materials
can be efficiently and accurately modelled by implementing several material
fractions into one element as shown by Hsiao and Kikuchi [17]. It results
in a continuum material formulation with one or more axes of anisotropy.
Huétink’s approach allows for accurate tracking of multiple fibre directions
in one continuum, whereas the use of a classic Green Naghdi or Jaumann
approach would lead to poor results because the fibre direction is not exactly
followed. These conclusions are stated by Boisse as well [18].

Accurate modelling of the fibre rotations with respect to the reference
coordinate system is included in the viscous models of McEntee and ÓBrádaigh
and Spencer [19, 20]. A different approach was adopted by Yu et al. Peng
and Cao and Xue et al. by using non-orthogonal constitutive models [21–23].
A convected non-orthogonal coordinate system, whose in-plane axes coincides
with the two fibre directions, is embedded in elements. The exactness of these
models is often compromised on an implementation level where increments are
linearised. FE formulations using a hybrid formulation automatically track
the fibre direction. Bar or truss elements are coupled to displacement degrees
of freedom of continuum elements and their orientation is therefore known
exactly. This approach has been used by several researchers [24, 25] and was
implemented as a standard option in the commercial FE programs Abaqus c©

and Msc Marc c©.

2.1.1 Uniaxial tensile test

The following examples illustrate the difficulties when using a standard FE
formulation to simulate deformations of highly anisotropic materials. An
arbitrary commercial FE code, Ansys c©, is used to simulate a simple tensile
test with a ply of unidirectional fibres. The linear elastic material is highly
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Figure 2.1: Deformed shape of a tensile test simulation with a highly
anisotropic material (scaled 250 times).

anisotropic with a stiffness ratio of 1 to 105. A mesh of 15 x 30 plane stress
quadrilateral elements (plane42) is used. The left and right hand side are
clamped and the right hand side moves in the y-direction as shown in figure 2.1.
The incremental displacement δ is very small, only 5 ·10−5 times the length of
the specimen. Geometric nonlinearities are taken into account (nlgeom,on).
Nevertheless, the simulation breaks down after only 4 steps at an elongation of
only 0.02%. Figure 2.1 shows the last converged solution. The ply widens near
the clamped edges, while it should contract due to Poisson’s effect. Similar
results are obtained with other FE codes. This phenomenon is caused by
updating the material orientations using an incorrect geometry. The element
strains ε are found by:

{ε} = [B] · {u} (2.1)

where [B] contains the derivatives of the element shape functions and {u}
denotes the nodal displacements. Implicit codes obtain the highest order of
accuracy if [B] is evaluated on the intermediate geometry between the initial
state and the current deformed state. The resulting stresses and subsequently
the nodal forces become misaligned if the material orientation is updated using
the same intermediate geometry, as illustrated in figure 2.2b. The top node of
a single element is moved to the right. As the fibre is the only stress bearing
material in the element, the resulting nodal force at the end of the step should
be aligned with the new fibre direction. The orientation update should take
place using the current geometry to avoid misalignment of the nodal forces in
large deformation simulations with anisotropic material (figure 2.2c).
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Figure 2.2: Resulting (mis-) alignment of the nodal force. (a) initial geometry
(b) nodal force R when using the intermediate geometry (c) nodal force R when
using the final geometry.
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Figure 2.3: Inaccurate fibre strain in pure shear.

2.1.2 Pure shear

Incorrect deformed shapes can be avoided by evaluating the material tensor
using the final geometry. Unfortunately this leads to less accurate strain
predictions as shown in the next example. One element is sheared up to 75◦ as
shown in figure 2.3. Applying pure shear should not introduce strains in the
fibres which are aligned with the frame. The fibre strain is however as high as
30% if it is evaluated according to (2.1) and the deformation is applied in one
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Figure 2.4: Initial and current configuration of a body.

step. Figure 2.3 shows that the accuracy improves if the total deformation is
split into several steps, but this increases the calculation time significantly. As
much as 86 steps are necessary to reduce the fibre strain below 1%.

The ’standard’ large deformation simulations are based on the assumption
that a large nonlinear displacement can be accurately approximated by
multiple small steps in which a linear theory is applied. This assumption
leads to poor performance in implicit FE simulations with (highly) anisotropic
material. The previous examples illustrate that it leads to contradicting
requirements as well. A review of the Finite Element formulation is necessary
if large deformations of anisotropic material are considered.

2.2 Continuum mechanics

Continuum mechanics provides a mathematical description of motion and
deformation of material in a reference system. It considers a body of a
homogenous material which can be anisotropic.

2.2.1 Kinematics

The deformable body in figure 2.4 is located in space by the Lagrangian vector
X at time t. The body has a volume V and a surface boundary Γ. The location
of the material particles in time is defined by the Eulerian location vector x,
which is a function of X and t.

x = x(X, t) (2.2)

The deformation gradient F(X,t) maps the initial configuration onto the
current configuration,

F(X, t) =
∂x

∂X
|t = x

←−∇0 (2.3)
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and can be decomposed into a stretch tensor and a subsequent rotation or
vice versa. The split is commonly performed using a polar decomposition and
results in a symmetrical stretch tensor. An alternative decomposition is more
convenient when considering anisotropic materials. The symmetry condition
of the stretch tensor is abandoned. The deformation tensor is decomposed in
a stretch tensor G and a subsequent rotation R.

F = R ·G (2.4)

We are free to choose any orthonormal rotation tensor R such that the non
symmetrical stretch tensor G is invariant under rigid body rotations. With
the decomposition of (2.4), the velocity gradient L is written as:

L = v
←−∇ (2.5)

= Ḟ · F−1

= Ṙ ·RT + R · Ġ ·G−1 ·RT

where v is the velocity. Introducing the tensors Ω and LG as:

Ω = Ṙ ·RT (2.6)

LG = Ġ ·G−1 (2.7)

the velocity gradient is split into the skew symmetric spin tensor Ω and an
invariant nonsymmetric rate of deformation tensor:

L = Ω + R · LG ·RT (2.8)

The tensor Ω is equal to the spin tensor W if the stretch tensor is symmetric.
The second term of (2.8) is then equal to the symmetric rate of deformation
tensor D,

L = W + D (2.9)

= 1
2(v
←−∇ −−→∇v) + 1

2(v
←−∇ +

−→∇v)

However, the decomposition of (2.4) does not necessarily result in a symmetric
stretch tensor in which case Ω and W will differ! This will be illustrated in
section 2.4. The rate of rotation tensor Ṙ is found by rewriting (2.5):

Ṙ = L ·R−R · Ġ ·G−1 (2.10)
= Ω ·R
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2.2.2 Stresses and strains

The local stress tensor τ is introduced as:

τ = ei · τij · ej (2.11)

with ei and ej the global base vectors. The local stress tensor τ co-rotates
with the rigid body rotations of the axes of anisotropy, which result from the
decomposition (2.4). The stress tensor τ is therefore invariant. It is related
to the global Cauchy stress tensor σ by a rotation only,

σ = R · τ ·RT (2.12)

This approach was introduced by Huétink [16] and leads to a conceptually
simple scheme for an updated or total Lagrange FE formulation for anisotropic
materials. Nonlinearities due to reorientation of the material are taken into
account when mapping the local stress tensor to the global Cauchy stress
tensor. Constitutive laws can be written in terms of an invariant fourth order
material tensor 4E, where 4E is constant in case of elastic deformations. There
is no need for non-orthogonal constitutive equations as introduced by Yu [21]
and Xue [23].

The right and left Cauchy Green tensor, C and B respectively, are suitable
strain definitions for large deformations. Both strain measures equal unity
in case of rigid body rotations. Using the decomposition of (2.4), the strain
definitions can be written as:

C = FT · F = GT ·G (2.13)

B = F · FT = R ·G ·GT ·RT (2.14)

The rate of the right Cauchy Green tensor is related to the rate of deformation
tensor D according to

Ċ = 2FT ·D · F (2.15)

= 2GT ·RT ·D ·R ·G

The rate of the Cauchy stress (2.12) is related to the local stress and the local
stress rate:

σ̇ = Ṙ · τ ·RT + R · τ̇ ·RT + R · τ · ṘT
(2.16)
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2.2.3 Plasticity

The total deformation is split into an elastic reversible part and a plastic
irreversible part

F = R ·Ge ·Gp (2.17)

This results in a split of the velocity gradient LG (2.7) in an elastic part Le

and plastic part Lp

LG = Le + Lp (2.18)

with

Le = Ġe ·G−1
e (2.19)

Lp = (Ge · 4I ·G−T
e ) : Ġp ·G−1

p (2.20)

where 4I is a fourth order tensor having the property 4I : A = A, where A
is an arbitrary second order tensor. Constitutive laws provide the additional
equations to determine the quantitative split of the total deformation.

2.2.4 Free energy and stress

Constitutive equations can be successfully derived using the Helmholtz free
energy, see e.g. Akkerman [26]. The starting point is some form of the Second
Law of thermodynamics. There are no restrictions for the material response at
large deformations, but the response at small deformations must coincide with
the linear theory, see Huétink [27]. Huétink [16] showed that the free energy
can be expressed as an invariant function of C only in case of anisotropy,
whereas that is not possible for the left Cauchy Green tensor B. The free
energy would then be a function of the tensor R as well. This makes it
more complicated to derive constitutive equations from free energy functions.
Therefore ψ is regarded as a function of the elastic strain tensor Ce.

ψ = ψ(Ce) (2.21)

The local stress tensor is derived from the free energy (Huétink [16]):

τ = 2ρGe · ∂ψ
∂Ce

·GT
e (2.22)

2.3 Finite Element formulation

The strong form of mechanical equilibrium without the presence of body forces
and boundary traction is formulated as:

σ ·
←
∇ = 0 (2.23)



22 Chapter 2. Large deformation simulation of anisotropic material

Following the standard procedure of weighing, applying reduced integration
and the divergence theorem of Gauss, the weak form of (2.23) becomes:

∫
V

w
←
∇ : σ dV =

∫
Γ
w · t dΓ (2.24)

where w are the weight functions and t is the traction on the boundary surface.
The rate form of this equation in the current configuration is found to be

∫
V

(
w
←
∇ : σ̇ −w

←
∇ · v

←
∇ : σ + w

←
∇ : σ J̇

J

)
dV =

∫
Γ
w · ṫ dΓ (2.25)

where J denotes the Jacobian, the volume ratio:

J = det(F) =
dV

dV0
(2.26)

Equation (2.25) is used to find consistent tangent matrices for the FE
calculations.

2.4 Fibre reinforced material

Section 2.2.1 stated the freedom of choice for the decomposition of the
deformation tensor F in a stretch tensor G and a subsequent rotation R.
The mapping of the initial fibre a0 onto its current state a is given by:

a = F · a0 (2.27)
= R ·G · a0

In case of uniaxial fibres it is convenient to take a rotation R that rotates the
initial fibre direction a0 towards the current fibre direction a:

R · a0 =
�0
�
a (2.28)

The non-symmetrical tensor G now relates the current length � to the initial
length �0:

G · a0 =
�

�0
a0 (2.29)

The fibres are assumed to be linearly elastic. The scalar fibre strain is defined
as:

ε = 1
2

�2 − �20
�20

(2.30)



Fibre reinforced material 23

or using the right Cauchy Green tensor:

ε = 1
2a0a0 : (Ce − I)/�20 (2.31)

The resulting free energy function per unit mass equals the elastically stored
energy.

ψ =
1
2ρ
Efε

2 (2.32)

=
Ef

8ρ0�40
(Ce − I) : a0a0a0a0 : (Ce − I)

Using (2.22), the invariant stress τ is found to be

τ =
ρEf �

2

2ρ0�60
a0a0a0a0 : (Ce − I) (2.33)

and the Cauchy stress tensor:

σ =
ρEf

2ρ0�40
aaa0a0 : (Ce − I) (2.34)

2.4.1 Consistent tangent

The performance of implicit FE simulations depends largely on the consistency
of the tangent (stiffness) matrix when using a Newton-Raphson procedure.
The iterative process converges very slowly or even diverges if not all the
nonlinearities are taken into account, especially when it concerns highly
anisotropic materials.
The local stress rate is found by differentiating (2.33) with respect to time.

τ̇ =
ρEf �

2

2ρ0�60
a0a0a0a0 : Ċe + τ (2

�̇

�
+
ρ̇

ρ
) (2.35)

The rate of rotation tensor Ṙ results from combining (2.28), (2.29) and (2.10):

Ṙ = L ·R− �̇

�
R (2.36)

Conservation of mass can be expressed as:

ρJ = c (2.37)

This results in the following relation for the rates:

ρ̇

ρ
= − J̇

J
(2.38)



24 Chapter 2. Large deformation simulation of anisotropic material

Equations (2.33), (2.35), (2.36) and (2.12) are now used to express the rate of
the Cauchy stress (2.16). This rate is used in (2.25) and with (2.38) it results
in the following consistent tangent matrix for the uniaxial fibre model:

K =
∫

V

[
ρEf

ρ0�40
·
(

1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
+ (2.39)

→
∇w · v

←
∇ : σ

]
dV

Details on the uni-axial fibre model are presented in appendix C.

2.5 General elastic anisotropy

The free energy function ψ of the uniaxial fibre model (2.32) is extended to
the arbitrary anisotropic case:

ψ =
1

8ρ0
(Ce − I) : 4E : (Ce − I) (2.40)

with 4E the invariant and constant fourth order material tensor. Using (2.22),
the invariant stress τ for the generalised anisotropic model is:

τ =
ρ

2ρ0
(Ge · 4I ·Ge) : 4E : (Ce − I) (2.41)

2.5.1 Consistent tangent

The rate of the local stress tensor (2.41) is given by:

τ̇ =
ρ̇

ρ
τ + 4E∗ : Le (2.42)

with

4E∗ = 4
ρ

ρ0
(Ge · 4I ·Ge) : 4E : (GT

e · 4I ·GT
e ) + 4I · τ + τ · 4I (2.43)

Since 4E∗ is symmetric, the skewsymmetric components of Le in (2.42) will
vanish. The nonsymmetric tensor Le can be replaced by its symmetric part,
an invariant rate of deformation tensor de:

de = 1
2(Le + LT

e ) (2.44)

= RT ·D ·R
The local stress rate can therefore be written as:

τ̇ =
ρ̇

ρ
τ + 4E∗ : de (2.45)
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Analogous to the procedure in section 2.4.1, equations (2.41), (2.45), (2.10)
and (2.12) are now used to express the rate of the Cauchy stress (2.16). This
rate is used in (2.25) and with (2.38) it results in the following consistent
tangent matrix for the generalised anisotropic model:

K =
∫

V

[
ρ

ρ0
· 1

2(w
←
∇+

→
∇w) :

(
F · 4I · F) : 4E : (2.46)

(
FT · 4I · FT

)
: 1

2

(
v
←
∇+

→
∇v

)
+
→
∇w · v

←
∇ : σ

]
dV

Details on the generalised elastic anisotropic material model are presented in
appendix E.

2.6 Application

The large deformation finite element formulation has been implemented in
Matlab c© to examine the performance. Multiple convergence and accuracy
tests were performed. The uniaxial tensile test example discussed in the
introduction does not show unrealistic shapes anymore due to the correct
update of the fibre direction. The fibre strain in the shear test example is now
accurately predicted, independent of the number of steps or the size of the
displacement increments. Two additional examples including plasticity will
be discussed here: the bias extension experiment and the pressurisation of a
McKibben actuator.

2.6.1 Bias extension

The bias extension experiment is frequently used to examine the shear
response of biaxial reinforced materials. Figure 2.5 shows the undeformed
and the deformed shape of the material. The two fibre directions are initially
perpendicular to each other at ±45◦. The specimen is gripped on the short
edges and elongated in the 0◦ direction. The stiffness of the fibres is dominant
and the specimen deforms as a trellis frame, with each fibre crossing acting
as a possible hinge point. Three deformation regions develop: an undeformed
region, a central region with pure shear and a region with intermediate shear.
Potter presented an extensive discussion of the bias extension experiment in
[28].

The fabric is 70 mm wide, 210 mm long and has a thickness of 1 mm. It
is meshed using 300 two-dimensional plane stress simplex triangles. Several
material fractions are combined within one element in these simulations. The
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Figure 2.5: The undeformed and deformed shape of the bias extension
simulation (no displacement scaling).
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Figure 2.6: Convergence plot of the one-step bias extension simulation.

deformation is equal for each fraction and each fraction contributes to the
total stress proportional to its volume fraction ν:

σ = Σiνiσi (2.47)

where i denotes the fraction number. The biaxial material is represented by an
elastic isotropic bulk fraction and two fibre fractions, with a Young’s modulus
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+45◦ fibre

−45◦ fibre

0◦ stitch

Figure 2.7: Idealised model of a biaxial non crimp fabric: two fibre layers and
a stitching thread.

1.0 GPa and 1.0·103 GPa respectively. The deformation shown in figure 2.5 is
applied in only one step, which is a good performance for an FE code. Figure
2.6 shows the convergence behaviour of this simulation. The unbalance norm
εu and the displacement norm εd are given by:

εu =
‖R− F‖
‖R‖ εd =

‖�u‖
‖u‖ (2.48)

where R are the reaction forces, F the applied nodal loads, �u the
displacement found during the iteration and u the total displacement. The
simulation initially converges slowly, due to strain increments over 100% and
fibre rotations up to 45◦. After 8 iterations it shows quadratic convergence.
All individual steps converge to machine precision within 6 iterations if the
simulation is split into more than 3 steps, showing quadratic convergence from
the first iteration onwards.

Another large advantage of the nonlinear Cauchy Green strain definition is
the increased robustness of the simulation when using poorly shaped elements.
Figure 2.5 shows elements with angles below 2◦, but the simulation can be
continued with another step without problems.

Plasticity and rigid rotations

Non crimp fabrics (NCF) consist of separate fibre layers which are stitched
together with a stitching thread. This thread is often made from polyester. An
idealised model of the biaxial NCF is found in figure 2.7. The two fibre layers
are orientated in the ±45◦ direction and the stitching thread is orientated
in the 0◦ direction. The stitch can deform plastically. A bias extension
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σy = σ0 + C(ε0 + εp)n

Figure 2.8: Stress strain curve of a polyester stitching thread with Nadai
hardening. Young’s modulus = 3.0 GPa, σ0 = 30 MPa, C = 100 MPa, ε0 =
5·10−5, n = 0.6

experiment as illustrated in figure 2.5 is no longer dominated by the shear
response of the fabric, but by the response of the stitch thread. The thread
is included in the simulation by an additional fibre fraction that can deform
plastically according to the Nadai stress-strain curve shown in figure 2.8. The
stitch responds elastically up to the yielding point and then follows the yield
surface given by the yield stress σy:

σy = σ0 + C(ε0 + εp)n (2.49)

where σ0, C, ε0 and n are material parameters and εp denotes the plastic
strain in the stitch material. The soft stitch material has been modelled using
the following values: Young’s modulus = 3.0 GPa, σ0 = 30 MPa, C = 100
MPa, ε0 = 5·10−5 and n = 0.6.

The fabric is simultaneously rotated by 90◦ during the extension to illustrate
the performance of the code under large rigid body rotations. Figure 2.9 shows
the deformed shape of the specimen. The colours indicate the plastic strain in
the stitches, going up to 40%. The total deformation and rotation is applied
in two steps and the individual steps converged to machine precision within
8 iterations. This illustrates that the formulation works very well for large
deformations and rotations including plasticity as well. Details on the elasto-
plastic uni-axial fibre model are presented in appendix D.
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undeformed
step 1

step 2

Figure 2.9: Plastic strain in the polyester stitching thread during a bias
extension and simultaneous rotation of a non crimp fabric.

2.6.2 McKibben actuator

The McKibben actuator is a pneumatic actuator with a high power to weight
ratio and used as an artificial muscle or as an actuator in mobile robots. It
consists of a inner bladder made of a flexible material, covered by a braided
shell with two fibre families. These fibres families have an equal but opposite
angle with respect to the longitudinal axis. The actuator expands radially
if it is pressurised and contracts or expands longitudinally, depending on
the initial orientation of the fibres. The angle of the fibres with respect to
the longitudinal axis will approach the theoretical limit of 54,4o at infinite
pressure, based on the stress distribution in longitudinal and circumferential
direction of a thin pressurised vessel covered with inextensible fibres. This
implies that actuators with initial fibre angles below 54,4o will contract during
pressurisation, respectively expand for angles above 54,4o.

Experimental and mathematical analyses of actuators made from natural
latex rubber bladders and polyester braids were conducted by Klute in 2000
[29]. One of his experiments has been simulated in a three dimensional
simulation. Figure 2.10 shows the actuator at ambient pressure and at a
pressure of 21.5 bars. The initial length, radius and thickness of the actuator
are respectively 264.0 mm, 8.7 mm and 2.4 mm. The end caps are considered
to be rigid. The initial fibre angle with respect to the longitudinal axis is
17.69o. The actuator is meshed with 2480 plane stress triangular membrane
elements and loaded with an uniform pressure from the inside. The bladder



30 Chapter 2. Large deformation simulation of anisotropic material

Figure 2.10: A McKibben actuator at ambient pressure and at 21.5 bars.

material is modelled using a Mooney-Rivlin material model in which the stored
strain energy W can be expressed as:

W =
n∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j (2.50)

where Cij are empirical constants and I1 and I2 are the strain invariants
of the left Cauchy strain tensor B. Details on the Mooney-Rivlin material
model are presented in appendix F. Two constants are sufficient to model
the bladder material accurately and are given by Klute: C10=118.4 kPa and
C01=105.7 kPa. Klute considered the fibres to be inextensible, a condition
that is imposed by setting the Young’s modulus of the fibres to 100 GPa. This
result in a stiffness ratio between the two material fractions of approximately
106, causing the system to be ill conditioned with condition numbers around
107. In spite of the large condition numbers, the simulation runs without
adding inertia effects. Inertia effects have a positive effect on the stability and
speed of the simulation as mentioned in the research of Meinders et al. [30].

The actuator is pressurised up to 100 bars in 40 steps. Figure 2.10 shows
the pressurised actuator at its minimal length at a pressure of 21.5 bars. The
plot shows the angle between the two fibre families, which is twice the angle
with respect to the longitudinal axis. The angle approaches the theoretical
limit discussed before. The actuator expands radially and longitudinally if
the pressure is increased above 21.5 bars, while the angle remains constant.



Application 31

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

500

1000

1500

2000

2500

Gaylord
Klute
experimental data
FE, stiff fibres
FE, including plasticity

λ [-]

Fo
rc

e
[N

]

Figure 2.11: Actuator force at a pressure of 5 bars.

Analytical expressions for actuator forces at different contraction ratios were
given by Gaylord in 1958 [31]. Gaylord assumed inextensible fibres and
neglected the membrane deformations of the inflated bladder. The model
results in a theoretical upper bound. Klute developed a non-linear model
that incorporates the membrane deformations of a Mooney-Rivlin bladder
material as well. The results from both analytical models and the FE results
are plotted in figure 2.11 for this specific actuator at a pressure of 5 bars.
The contraction ratio λ is defined as the ratio between the current length
and the length at ambient pressure: λ = L/L0. The FE model shows good
agreement with the model developed by Klute, although deviations with the
experimental results are still significant. This can be due to elastic and/or
plastic strain in the fibres. The braid manufacturer (Alpha Wire Company)
kindly supplied further details on the reinforcement used. The GRP-110-1-
1/4 braid consists of thermoplastic polyester fibres and has a linear density
of 24 g/m. The polyester has a density of 1340 kg/m3. These values result
in fibre stresses between 140 and 150 MPa, well above the elastic region of
polyester. The simulation has been rerun including fibre plasticity and a
hardening law according to Nadai: Young’s modulus = 3.5 GPa, σ0 = 70
MPa, C = 350 MPa, ε0 = 5·10−5 and n = 0.6. The fibres start yielding
when the pressure exceeds 2.5 bar. Figure 2.12 shows the plastic fibre strain
distribution along the actuator at a pressure of 5 bars. The permanent plastic
strain in the fibre reduces the actuator force and the force now corresponds
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Figure 2.12: Total plastic fibre strain at a pressure of 5 bars.

to the experimental results as shown in figure 2.11. Accurate stress strain
curves for this material should be obtained to validate the hypotheses of fibre
yielding at these pressure levels. This example illustrates that the method
works properly for 3D membrane elements with in and out-of-plane loading
including plastically deformable fibres. The simulations are robust and show
quadratic convergence, provided the pressure boundary condition is linearised
consistently. This linearisation is presented in appendix G.

2.7 Numerical issues

Figure 2.6 shows a displacement norm that reduces to machine precision. The
unbalance norm remains 103 times higher. This is due to the condition of the
system. The fibre stiffness is 103 times higher than the bulk stiffness, causing
unbalances in the same order of magnitude.

Care should also be taken when storing the deformation gradient F. Large
rounding errors can occur if deformations are small and the deformation
gradient and the right Cauchy Green strain tensor are close to unity.
Significant digits are lost when the local stress τ is evaluated (2.41), due
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to the subtraction of the unit tensor I. This can be solved by writing:

F = I + δF (2.51)

Storing δF instead of F and rewriting the strain definition in terms of δF
avoids the large numerical rounding errors if small deformations are applied.

A shell or membrane formulation is commonly used in forming simulations
of thin sheet materials, the so called 2.5-dimensional case. Strain in the out-of-
plane direction is evaluated using constitutive equations and assuming plane
stress conditions. Equations (2.39) and (2.46) show that the tangent stiffness
matrices are generally symmetric, but in the 2.5 dimensional case this is
only true if the volume or the thickness is assumed to be constant. Other
assumptions will result in a non-symmetrical tangent matrix.

2.8 Conclusions

The standard finite element codes are not very suitable for large deformation
simulations of highly anisotropic materials. It leads to confusing formulations
as well. To avoid misalignment of the nodal forces, the material axes of
anisotropy should be evaluated on the final geometry. However, this causes the
accuracy of the strain prediction to drop significantly. Instead, the deformation
gradient should be decomposed into a rotation tensor and a stretch tensor.
The rotation reflects the rotation of the axes of anisotropy. This is an
advantage when modelling fibre reinforced composites. Stresses are computed
using invariant local stress and stiffness tensors. This leads to a simple and
straightforward implementation of constitutive laws, which do not have to
account for any rotation of the material. Consistent tangent matrices were
presented for linearly elastic fibres and for a generalised anisotropic material.
The scheme was implemented and tested in 2D and 3D simulations, including
plasticity and large rigid rotations. The simulations converge quadratically
for arbitrary deformation gradients and arbitrary degrees of anisotropy. The
simulations are more robust than the standard implementations. Poorly
shaped elements behave significantly better when using the right Cauchy
Green strain definition instead of a linear strain definition.

Bibliography

[1] C. Mack and H. Taylor. ‘The fitting of woven cloth to surfaces’. J Text
I, 47:477–487, 1956.



34 Chapter 2. Large deformation simulation of anisotropic material

[2] P. Potluri, S. Sharma and R. Ramgulam. ‘Comprehensive drape modelling
for moulding 3D textile preforms’. Compos Part A-Appl S, 32:1415–1424,
2001.

[3] M. Aono, D. E. Breen and M. J. Wozny. ‘Modeling methods for the design
of 3D broadcloth composite parts’. Comput Aided Design, 33:989–1007,
2001.

[4] S. G. Hancock and K. D. Potter. ‘The use of kinematic drape modelling
to inform the hand lay-up of complex composite components using woven
reinforcements’. Compos Part A-Appl S, 37:413–422, 2006.

[5] S. G. Hancock and K. D. Potter. ‘Virtual Fabric Placement - A
new strategy for simultaneous preform design, process visualisation
and production of manufacturing instructions for woven composite
components’. In Proc 9th Int ESAFORM Conf, pages 727–730. Publishing
House Akapit, Krakow, Poland, 2006, 2006. ISBN 83-89541-66-1.

[6] B. Chen and M. Govindaraj. ‘A physically based model of fabric drape
using flexible shell theory’. Text Res J, 65:324–330, 1995.

[7] R. Hill. ‘A theory of the yielding and plastic flow of anisotropic metals’.
Proceedings of the Royal Society of London, 193:281–297, 1948.

[8] H. Vegter and A. H. van den Boogaard. ‘A plane stress yield function for
anisotropic sheet material by interpolation of biaxial stress states’. Int J
Plasticity, 22:557–580, 2006.

[9] F. Barlat, D. J. Lege and J. C. Brem. ‘A Six Component Yield Function
for Anisotropic Materials’. Int J Plasticity, 7:693–712, 1991.

[10] J. Bonet and A. J. Burton. ‘A simple orthotropic, transversely isotropic
hyperelastic constitutive equation for large strain computations’. Comput
Method Appl M, 162:151–164, 1998.

[11] C. Sansour and J. Bocko. ‘On the numerical implications of multiplicative
inelasticity with an anisotropic elastic constitutive law’. Int J Numer
Meth Eng, 58:2131–2160, 2003.

[12] J. Lu and P. Papadopoulos. ‘A covariant formulation of anisotropic finite
plasticity: theoretical developments’. Comput Method Appl M, 193:5339–
5358, 2004.

[13] B. Nedjar. ‘Frameworks for finite strain viscoelastic-plasticity based on
multiplicative decompositions. Part i: Continuum formulations’. Comput
Method Appl M, 191:1541–1562, 2002.

[14] B. Nedjar. ‘Frameworks for finite strain viscoelastic-plasticity based on
multiplicative decompositions. Part ii: Computational aspects’. Comput
Method Appl M, 191:1563–1593, 2002.

[15] B. Nedjar. ‘An anisotropic viscoelastic fibrematrix model at finite strains:
Continuum formulation and computational aspects’. Comput Method
Appl M, 196:1745–1756, 2007.



BIBLIOGRAPHY 35

[16] J. Huétink. ‘On Anisotropy, Objectivity and Invariancy in finite thermo-
mechanical deformations’. In Proc 9th Int ESAFORM Conf, pages 355–
358. Publishing House Akapit, Krakow, Poland, 2006, 2006. ISBN 83-
89541-66-1.

[17] S.-W. Hsiao and N. Kikuchi. ‘Numerical analysis and optimal design of
composite thermoforming process’. Comput Method Appl M, 177:1–34,
1999.

[18] P. Boisse. ‘Meso-macro approach for composites forming simulation’. J
Mater Sci, 41:6591–6598, 2006.
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Chapter 3

Solutions to intra-ply shear
locking in finite element
analyses of fibre reinforced
materials∗

Abstract

Intra-ply shear locking results in unrealistic fibre stresses and spurious
wrinkling in composite forming simulations. Three remedies were investigated:
aligning the mesh, applying reduced integration and using multi-field elements.
Several triangular and quadrilateral elements were tested on their capability
to avoid locking in a two-dimensional bias extension simulation. The
resulting locking-free elements were tested in a realistic three-dimensional
drape simulation of a biaxial fabric as well. The new triangular multi-field
element seems to be the best locking-free element for unaligned meshes. It
has a semi-quadratic in-plane and a linear out-of-plane displacement field.
This combination improves the accuracy of the element and avoids contact
problems in 3D simulations.

∗This chapter is based on: R.H.W. ten Thije and R. Akkerman. Solutions to intra-ply
shear locking in finite element analyses of fibre reinforced materials. Manuscript submitted
to Composites Part A: Applied Science and Manufacturing, with R.H.W. ten Thije as the
principal author
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3.1 Introduction

Manufacturing processes can lead to unacceptable shape distortions in fibre
reinforced products. Thin walled three dimensional products exhibiting double
curvature are especially susceptible to springback, wrinkling or inefficient
fibre distribution upon forming. These distortions depend on a wide
variety of parameters, of which geometry, material properties, lay-up, process
temperatures and friction are just a few important ones. Numerical tools
are powerful instruments to analyse the distortions in the design phase and
can ideally lead to a first-time-right design. There are two main approaches
to composite forming simulations: the geometrical approach and the Finite
Element (FE) approach. The fast and simple geometrical models are often
sufficient for design purposes and date back to the 1950s, when Mack and
Taylor predicted the fibre distribution of a woven cloth on simple geometries
based on a pin jointed net assumption [1]. Increasingly advanced models have
been built ever since [2–4] and recently even interactive tools that allow the
user to manipulate woven fabrics in a virtual environment have been developed
[5]. Constitutive properties have been added [6], but geometrical models
remain restricted to very simple material models and geometrical boundary
conditions.

FE simulations are significantly slower than geometric models, but are
capable of simulating the production process in more detail. Complex
constitutive behaviour and boundary conditions, like friction or tool
temperatures, can be included. This makes FE simulations applicable for
predicting phenomena like springback, wrinkling or fibre bridging. One of the
earliest elastic FE models was applied by Chen and Govindaraj in the 1990s
[7], in which a woven fabric was modelled as a continuous, orthotropic medium.
Although fabrics are discontinuous at lower length scales, the continuous
approach has proven to be successful in many forming simulations [8–12].
Reinforcements can be included in FE models by adding bar or truss elements
to standard continuum elements. This semi-discrete approach has been used
by several researchers [13, 14]. Modelling each individual constituent of the
fabric as a separate object is (yet) computationally too expensive for forming
simulations of fibre reinforced materials. This discrete approach is limited to
analyses on a mesoscopic level, where it can provide useful information on the
mechanical properties of the fabric and can replace elaborate or complicated
experiments [15, 16].

An important problem that has to be solved in FE simulations of fibre
reinforced materials is intra-ply shear locking. Intra-ply shear locking is
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the incapability of the element displacement field to represent the correct
deformation mechanism of the fibre reinforced material. It is a numerical
problem that is not related to the physical jamming of the reinforcement.
It leads to overestimation of fibre stresses, forces and stiffnesses and often
leads to spurious wrinkles in 3D simulations. The first article that addresses
the intra-ply shear locking problem and illustrates the shortcomings of the
current standard element formulation was presented by Yu et al. in 2005 [17].
An extended version was published in 2006 [18].

Intra-ply shear locking can occur in all FE simulation that use the continuum
or the semi-discrete approach. Both approaches use continuum elements that
span multiple yarns and are restricted to deformations that are allowed by
the elements’ displacement fields. These might inhibit the shear deformation
with intra-ply shear locking as a result. Discrete approaches are free of intra-
ply shear locking due to the detailed scale of modelling. The macroscopic
deformation is not restricted by the elements’ displacement field in this case.

The origin and consequences of the locking problem are discussed in the next
subsection. Possible solutions to the locking problem are presented in section
3.2 and in section 3.3 the performance of the different remedies is investigated
in a two-dimensional case. The resulting non-locking elements were tested in
a realistic three-dimensional drape simulation of a biaxial fabric in section 3.4.
The paper ends with the conclusions drawn from this research in section 3.5.

3.1.1 Intra-ply shear locking

The locking phenomenon can be illustrated by simulating the bias extension
experiment. The bias extension experiment is frequently used to examine the
shear response of biaxial reinforced materials. The left hand side of figure 3.1
shows the undeformed and the deformed shape of the material. The two fibre
directions are initially perpendicular to each other at ±45◦. The specimen
is gripped on the short edges and gradually extended. The stiffness of the
fibres is dominant and the material deforms as a trellis frame, with each fibre
crossing acting as a possible hinge point. Three deformation regions develop:
an undeformed region (I), a central region with pure shear (II) and a region
with intermediate shear (III).

Next, two finite element models are built. The first one is built using mesh
A. The element borders are aligned with the fibre directions and coincide with
the lines along which the material develops ‘hinge’ lines. Figure 3.2 shows the
available options for aligning a fibre direction a with the element edges for
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Figure 3.1: The bias extension experiment with the three different deformation
regions. The simulation with mesh B shows intra-ply shear locking.
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Figure 3.2: Alignment of the fibre direction a in a triangular and quadrilateral
element. Three and two alignment options are available, respectively.

both a triangular element and a quadrilateral element. The aligned mesh in
figure 3.1, mesh A, can represent the trellis deformation correctly and locking
is absent. The second FE model is built using mesh B. This mesh shows
severe locking, since the elements cannot represent the discontinuous shear
field. Fibres are stretched during the simulation, resulting in unrealistically
high forces. The graph in figure 3.1 shows the resulting tensile force of the
bias extension simulation with both mesh types. Dimensions and material
properties can be found in Table 3.1. The specimen is elongated to 115%
of the original length. The force is normalised with respect to the tensile
force resulting from the simulation with an aligned mesh using eight linear
triangular elements (mesh A). The figure shows that locking is reduced if the
number of elements increases. This is the case in most types of locking. The
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width [mm] 50 bulk stiffness [MPa] 2
height [mm] 100 fibre stiffness [MPa] 4000
thickness [mm] 1 bulk volume fraction [-] 0.50
mesh [-] 2 x 4 fibre volume fraction (2x) [-] 0.25

Table 3.1: Parameters of the bias extension simulation.

excessive amount of elements necessary to eliminate locking for this problem
would lead to unacceptable simulation times in a regular forming simulation.
Other solutions have to be found and three options are presented in the next
section.

3.2 Remedies against intra-ply shear locking

Forming simulations of fibre reinforced materials are often performed on
relatively thin blanks where the blank is modelled using membrane or shell
elements. The blank can have any arbitrary shape. Triangular meshes
are preferred, since mesh generators for triangular meshes tend to be more
robust than those for quadrilaterals when meshing arbitrarily shaped blanks
[19]. From a programmer’s point of view, the simplex elements are popular
elements. These elements have linear displacement fields and constant
gradients, making them easy to implement and fast in terms of calculation
time. The simplex triangle is therefore an obvious choice, but, as shown in
the previous paragraph, it exhibits severe locking if the mesh is unaligned.

Three possible ways to avoid locking are discussed in this paper:

1. Aligned meshes

2. Selective reduced integration

3. Multi-field elements

Some of these options make it necessary to use higher order elements or
quadrilaterals. The X-FEM method has not been considered here, although
it initially seems a suitable method. X-FEM elements have been designed
to represent discontinuous fields within one element. This allows for efficient
simulations of growing cracks or moving material boundaries without the need
for continuous re-meshing. According to Yu et al. [18], the simplex triangular
element needs three and the simplex quadrilateral needs five additional intra-
ply shear modes to represent the correct shear behaviour for a biaxial fabric.
According to our opinion, each element needs an infinite number of additional
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shear modes. Yu et al. assumed that the discontinuity crosses at least one
node of the element. However, in an unaligned mesh the discontinuity can
cross the element at any arbitrary place. The origin of the discontinuity is
also unknown beforehand. This makes the implementation of the X-FEM
method problematic and computationally too intensive.

3.2.1 Aligned meshes

Aligning the mesh with the fibre directions is probably one of the best remedies
against intra-ply shear locking. Special attention is needed at curved edges
of the blanks during meshing, where element edges cannot simply follow the
curved boundary. This was already shown in the drape simulation in the article
of Yu et al. [18]. This limits the use of automatic mesh generation. Alignment
becomes impossible if the element contains more than two fibre directions.
This can occur in multi-layer elements, where several layers are efficiently
modelled within one element through the thickness [20, 21]. Alignment also
limits the use of Arbitrary Lagrangian Eulerian (ALE) methods, in which the
alignment of the fibres and the mesh will disappear during the simulation.

3.2.2 Selective reduced integration (SRI)

Reduced integration or under-integration of elements is a well known method
to eliminate several types of locking [19, 22, 23]. Yu et al. [18] illustrated
the use of reduced integration to eliminate intra-ply shear locking for woven
fabrics. An unaligned fully integrated element will lock in a region where
the shear field is discontinuous. The discontinuity results in fibre strains in at
least one of the integration points. Reduced integration relieves this condition.
Fibres can stretch freely in the integration points that are left out, eliminating
the locking. The corresponding element deformation is a zero energy mode.
Yu et al. did not consider reduced integration to be a useful option, due to
the unwanted hourglassing effect that can occur. Hourglassing is a repetitive
pattern of zero energy modes and can be suppressed by hourglass control.
This, however, gives rise to locking again as Yu et al. show in one of their
simulations. In our opinion, Selective Reduced Integration (SRI) should be
used instead of complete reduced integration. The term selective denotes that
reduced integration should only be applied to the fibre constituent of the
material model. This avoids the hourglassing problem.

The locking problem cannot be solved for the linear triangle by reduced
integration, since it is already fully integrated with only one integration
point. Quadratic elements are required for reduced integration of triangular
elements and that is a drawback, firstly because of the implementation and
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simulation time arguments mentioned before and secondly because of the
known problems in simulations including contact and quadratic elements.
The midside nodes of quadratic elements especially tend to oscillate during
the simulation, slowing down the simulation progress and causing unrealistic
results at the interface [19, 24]. Finally, the improved accuracy of higher order
elements drops in nonlinear simulations with large deformations [19]. The
order of the displacement field of an element can be increased by adding degrees
of freedom to existing nodes instead of adding new nodes. An example is the
Allmann88 triangle with vertex rotations [25–27]. This Allman88 triangle is
derived from the quadratic triangle, where the midside nodes are replaced by
vertex rotations and additional constraints. This element is included in this
research, because it is expected to be more robust in simulations using contact.

3.2.3 Multi-field element (MF)

Multi-field elements are also known as mixed elements. These elements contain
degrees of freedom of different types, e.g. displacement and temperature. We
developed a multi-field element, where fibre strain is chosen as an additional
degree of freedom. The new element is an assumed strain element, the fibre
strain is interpolated independent of the displacement field. Locking of the
elements is avoided by choosing the correct order of both the interpolation
fields. A non-locking combination is e.g. the quadratic displacement - constant
fibre strain triangle. Normally, a quadratic element has a linear fibre strain
field. By assuming this strain to be constant, the number of fibre strain
constraints is reduced and locking is avoided.

A fibre f with direction a is located in a continuum body at position x.
The element strain in the direction of the fibre must equal the assumed strain
εf of the fibre. This results in a total of three equations for the body under
consideration, an equilibrium equation, a boundary traction condition and a
fibre strain constraint:

σ ·
←
∇+ f = 0 (σij,j + fi = 0) in V (3.1)
σ · n = t (σijnj = ti) on Γ (3.2)

a · u
←
∇ · a− εf = 0 (aiui,jaj − εf = 0) in V, (3.3)

with V the volume of the body and Γ the boundary. The vector f denotes
the body forces, t, the boundary tractions and n, the outward normal on the
boundary. The total stress σ consists of an element stress σel that is derived
through the normal finite element equations and a scalar fibre stress σf that
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results from the additional field:

σ = σel + σfaa (σij = σel
ij + σfaiaj), (3.4)

The fibre stress and strain are related through σf = Efεf , with Ef the
Young’s modulus of the fibre. Equations (3.1) and (3.2) are weighted with
a set of weight functions w and equation (3.3) with a weight function q.
Applying integration by parts and the divergence theorem of Gauss results
in the following weak form:∫

V
w
←
∇ : σel dV +

∫
V

w
←
∇ : σfaa dV+

∫
V
q(a · u

←
∇ · a) dV− (3.5)∫

V
qεf dV =

∫
Γ
w · t dΓ +

∫
V

w · f dV.

Following Galerkin’s method, equation (3.5) results in the following system of
equations: [

K G
H L

]
·
{

uk

εk
f

}
=
{

F
0

}
, (3.6)

with uk and εk
f , the nodal degrees of freedom and k, the nodal counter. The

vector and matrix components are given by:

Kαβ =
∫

V

1
2(Nα

←
∇+

→
∇Nα) :4 E : 1

2(Nβ
←
∇+

→
∇Nβ) dV (3.7)

Gαγ =
∫

V

Ef

2 (Nα
←
∇+

→
∇Nα) : aaMγ dV (3.8)

Hηβ =
∫

V

1
2(Nβ

←
∇+

→
∇Nβ) : aaMη dV (3.9)

Lηγ = −
∫

V
MηMγ dV (3.10)

Fα =
∫

Γ
Nα · t dΓ +

∫
V

Nα · f dV, (3.11)

where N denotes the corresponding set of interpolation functions for the
displacement field and M the interpolation function for the strain field. The
system of equations (3.6) is non-symmetric. It will become symmetric if the
fibre stress is chosen as the additional degree of freedom, but large deformation
simulations revealed a more robust behaviour of the multi-field element with
the strain degree of freedom. Strain values are closer to the displacement
values, which result in a decreased loss of significant digits and less ill-
conditioned numerical systems. In this case we have chosen robustness over
symmetry of the set of equations.
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Arbitrary combinations of interpolation for the separate fields may lead
to poor numerical performance or even non-convergence [23, p. 200].
Interpolation fields of equal order will always result in a non-convergent
element, unless additional effort is made to stabilise the field(s) as done
by Hughes [28]. Two non-locking multi-field elements are included in this
research: the quadratic displacement - constant fibre strain triangle and the
linear displacement - constant fibre strain quadrilateral. Both these elements
are convergent without additional stabilisation.

The general theorem of Malkus and Hughes [29] established the equivalence
between many selective reduced integration of elements and multi-field
elements. Although not investigated thoroughly, the SRI and the multi-field
elements presented here are likely to be equivalent in small deformations.
Given a small deformation, both elements respond with the same Cauchy
stress and nodal forces. However, the convergence rate of the multi-field
element appeared to be far better than the convergence rate of the SRI-
elements in large deformation simulations. For this reason, both element types
are included in this research.

3.3 Implementation and results

Nine different elements were selected based on the remedies against intra-ply
shear locking that were discussed in the previous section, as shown in figure
3.3.

1. Simplex (linear) triangle (LTR)

2. Quadratic triangle (QTR)

3. Quadratic triangle with selective reduced integration (QTR SRI)

4. Allman88 triangle (DRIL)

5. Allman88 triangle with selective reduced integration (DRIL SRI)

6. Multi-field quadratic triangle with a constant strain field (QTR CMF)

7. Simplex (linear) quadrilateral (QUAD)

8. Simplex (linear) quadrilateral with selective reduced integration
(QUAD SRI)

9. Multi-field simplex quadrilateral with a constant strain field
(QUAD CMF)
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displacement

multifield

rotational

Degrees of freedom

full
reduced

Integration scheme
LTR QTR / QTR_SRI DRIL / DRIL_SRI

QTR_CMF QUAD / QUAD_SRI QUAD_CMF

Figure 3.3: Nine different elements that were tested on their performance in
a bias extension simulation.

The elements were tested in a bias extension simulation as shown in figure 3.1
in a relatively coarse mesh. The number of elements ranged between 8 and 16,
depending on the element type and mesh type. The material model consists
of several material fractions. The deformation is equal for each fraction and
each fraction contributes to the total stress proportional to its volume fraction
ν:

σ = Σiνiσi , (3.12)

where i denotes the fraction number and the sum of the volume fractions
equals unity. This allows for implementation of several material models into
one element. The biaxial material is represented by an elastic isotropic bulk
fraction and two fibre fractions. The geometry and the material parameters
of the bias extension simulation can be found in Table 3.1. The prescribed
elongation was 1 mm. Aligned and unaligned meshes of triangles were used,
whereas the mesh of the quadrilaterals was necessarily unaligned. Figure 3.4
shows the resulting tensile forces of the simulations. The exact solution is
not trivial for this simulation where fibres are not infinitely stiff. The borders
between the different shear regions will develop a slight curvature instead
of remaining straight as would be the case with infinitely stiff fibres. The
simulation with the aligned mesh using simplex triangles is expected to be
close to the exact solution and the tensile forces are normalised with respect
to the result of this simulation.
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Figure 3.4: Tensile forces from simulation of the bias extension test. The
forces are normalised with respect to the simulations with aligned simplex
triangles.

The fully integrated elements show accurate results in aligned meshes
and show locking in unaligned meshes, as expected. The quadratic triangle
(QTR) has an overshoot of only 20% in the unaligned case, due to the small
displacement in this particular case. Locking becomes more severe for this
element if the elongation is increased. The results from the constant multi-
field (CMF) elements and the elements with selective reduced integration (SRI)
are almost identical. SRI reduces the number of evaluated fibre strains in an
element to one, equal to the number of fibre strains in the CMF element.
Both SRI and MF elements effectively eliminate locking. Elements become
significantly more compliant, even more than the aligned, fully integrated
elements. This effect is known from other types of locking: reduced integration
over-eliminates the locking effect. The MF and SRI quadrilaterals give the
most accurate results in unaligned meshes. The deviation in the predicted
tensile force is around 4% for this specific configuration, using a relatively
coarse mesh. The error decreases when the number of elements increases. A
dens mesh of 25 by 50 elements reduced the error to 0.5% for the quadrilaterals
and to 5% for the quadratic triangles using MF or SRI. The Allman88 element
(DRIL), with drilling degrees of freedom and with SRI, still locks in an
unaligned mesh. The added degrees of freedom (and zero energy modes) are
apparently insufficient to eliminate locking. It would be convenient to assess
the element’s tendency to lock beforehand. A procedure to do this is the
constraint counting method.
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3.3.1 Constraint counting

Constraint counting is a heuristic method and has proven to be effective in
predicting the tendency of elements to lock [23, p. 209]. It is not based on a
mathematical analysis and an optimal constraint count does not necessarily
imply that the complete element performance is optimal. Figure 3.5 shows
a standard mesh that is suppressed at two sides. If the number of elements
approaches infinity, the constraint ratio is given by:

r =
nu

ni
(3.13)

where nu is the number of displacement degrees of freedom and ni is the
number of inextensibility constraints or the number of stiff fibre directions
within the element. Figure 3.5 shows the constraint ratios for several elements
used to simulate the deformation of a biaxial fabric. For example, in figure 3.5a
the constraint ratio of the linear triangle is 1

2 . For each node with two degrees
of freedom that is added to this mesh, two integration points are added, both
of which contain two inextensibility constraints. Constraint ratios for elements
with reduced integration and those for the corresponding multi-field elements
are equal. One integration point imposes the same number of constraints as
a constant multi-field.

The constraint ratio for an unaligned mesh has to be larger than or equal
to one, to avoid locking. This can be illustrated by comparing figure 3.4
and 3.5. The fully integrated quadrilateral has the smallest constraint ratio
and shows severe locking. The quadratic triangle with reduced integration
or a constant multi-field has the largest constraint ratio and results in
the lowest bias extension force. The SRI and MF quadrilateral have an
optimal constraint ratio and are the most accurate in the two-dimensional
bias extension simulation. The Allman88 triangle has a constraint ratio below
one and will always lock, even if rotations at the clamped edges are allowed.
The constraint ratio appears to be consistent with the behaviour found in the
bias extension simulations.

However, constraint counting by itself is insufficient to predict the locking
behaviour of elements. Element with additional displacements tangent to
element sides and constraint ratios above one still showed severe locking.
Additional bubble modes or incompatible modes appeared to be ineffective
as well. The displacement field of the element (or several elements) has to
be able to conform to displacements as shown in figure 3.1. Mesh edges must
be able to deform in a direction normal to that edge for this type of locking.
Otherwise the element will still lock.
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(b) QTR

(e) DRIL_SRI

(g) QTR_CMF

(c) QUAD

(i) QUAD_CMF

(a) LTR

(f) QUAD_SRI(d) QTR_SRI

(j) QTR_LMF

displacement
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rotational

Degrees of freedom
full
reduced

Integration scheme
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Figure 3.5: Constraint ratio.
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Figure 3.6: Maximum incremental displacement within one step.

3.3.2 Element performance

Forming simulations of fibre reinforced composites must perform well in large
deformations of highly anisotropic material. The locking-free elements from
figure 3.4 were tested on their performance in large deformations. The fibre
stiffness was increased by a factor 103 to create an extremely anisotropic
material and to test the limits of the elements. The tangent matrix was
calculated numerically for all element types. The unbalance norm εr and
the displacement norm εu are given by:

εr =
‖R− F‖
‖R‖ , εu =

‖�u‖
‖u‖ , (3.14)

where R are the reaction forces, F , the applied nodal loads, �u, the
displacement found during the iteration and u, the total displacement. A strict
maximum value of 10−8 was used for both norms as a convergence criterion and
the maximum number of iterations was set to eight. The maximum allowable
incremental displacement of one step was then determined iteratively. Figure
3.6 shows the results of this analysis. The element performance deteriorates
when reduced integration is used and improves for multi-field elements. The
maximum step size for the aligned quadratic triangles is around 7% of the total
specimen’s length. This value increases by almost 2.5 times for the multi-field
element and decreases by almost 2.5 times for the element that uses SRI. For
unaligned meshes the difference is even larger. The quadrilaterals perform
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Figure 3.7: Triangular element with a quadratic in-plane and a linear out-of-
plane displacement field.

quite well and the difference between SRI and the multi-field element is not
as large as it is for the quadratic triangle.

3.3.3 Advanced triangular membrane element

Aligning the mesh, selective reduced integration and multi-field elements all
solve the locking problem in 2D simulations with biaxial fabrics. Only SRI
and MF elements are locking-free in unaligned meshes and can be used in
combination with automatic mesh generation and multi-layer elements. The
multi-field quadrilateral element is the best choice based on the 2D simulation
results. It is accurate and performs well in large deformations. The quadratic
displacement - constant fibre strain multi-field element performs even better
in large deformations, but it is less accurate.

Triangular elements are preferred to quadrilaterals in automatic mesh
generation and 3D simulations with large deformations. Locking-free
triangular elements are all higher order elements and to solve their known
problems in simulations including contact, the element is given separate
displacement fields for the in-plane and out-of-plane displacement. The
elements contain only a higher order in-plane displacement field and the out-
of-plane displacement remains linear to avoid oscillations of the midside nodes
in this direction. Figure 3.7a shows the QTR CMF element. Midside node
displacements are defined with respect to the average nodal displacement of
the corresponding corner nodes as shown in figure 3.7b. The midside node
can have an additional displacement tangential to the straight line between
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the corner nodes and a displacement in the direction of the outward normal.

This QTR element still behaves too compliant. Suppressing the u-
displacement of the midside nodes lowers the constraint ratio and improves
the accuracy. Only an in-plane displacement normal to the element edge is
allowed. The resulting semi-quadratic (SQTR) element has a constraint ratio
of 5

4 . A bias extension simulation with this element results in a normalised
tensile force of 0.94 N/N, which is, as expected, based on the constraint
ratios. The SQTR element developed here will be included in the 3D drape
simulations in the next section to assess the performance in realistic 3D drape
simulations.

3.4 Application: a 3D drape simulation

A drape process has been simulated to test the performance of the locking-
free elements in three-dimensional composite forming processes. A biaxial
reinforced fabric is drawn into a hemispherically shaped mould. The setup is
shown in figure 3.8. The simulation parameters can be found in Table 3.2.
The ratio between fibre stiffness and bulk stiffness is 104, resulting in a highly
anisotropic material that shears easily and has a negligible elongation in the
fibre direction. Mass scaling has been applied to speed up the simulations [30].
The amount of mass scaling has a negligible effect on the simulation results,
with observed deviations up to a maximum of 2% in punch force and final
fibre stresses. Contact between the fabric and the tools is modelled using a
penalty formulation. The fabric can slide along the tools without friction. The
fabric will develop so called ‘ears’ during draping and will have regions where
the shear deformation is high. The simulations were run using the following
membrane elements and meshes:

1. LTR, aligned mesh

2. QUAD, aligned mesh

3. SQTR SRI, unaligned mesh

4. SQTR CMF, unaligned mesh

5. QUAD SRI, unaligned mesh

6. QUAD CMF, unaligned mesh

The list contains triangular and quadrilateral elements and all three remedies
against intra-ply shear locking are included. Figure 3.9 shows the top view
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punch

fabric

die

blankholder

Figure 3.8: Drape setup.

a. LTR b. SQTR CMF c. QUAD SRI

irregularity

Figure 3.9: Top view of the fabric at the end of the drape simulation.

fabric dim. [mm] 400 x 400 bulk stiffness [MPa] 0.2
fabric thickn. [mm] 1 bulk vol. frac. [-] 0.50
die radius [mm] 100 fibre stiffness [MPa] 4000
die shoulder [mm] 20 fibre vol. frac. [-] 0.25
mesh [-] 20 x 20 fabric density [kg/m3] 2000
punch velocity [mm/s] 10 mass scaling [-] 104

Table 3.2: Parameters of the drape simulation.
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Figure 3.10: Maximum fibre stress and average punch displacement during the
drape simulation.

of the final fabric geometry of several simulations. Figure 3.9a shows the
results when using an aligned triangular mesh. Figure 3.9b and 3.9c show
the results of an unaligned mesh using triangular and quadrilateral elements,
respectively. The deformed shape of the simulation with an unaligned mesh
using quadrilaterals shows regions where mesh edges exhibit irregularities.
It also shows some elements, which are poorly shaped due to large shear
deformations. The deformed shape of the fabric meshed with SQTR elements
is nearly identical to the simulation with an aligned mesh and does not
show any poorly shaped elements. On average, triangular elements seem less
susceptible to become poorly shaped than quadrilaterals.

The maximum fibre stress that occurred during the simulation for the
different element types and meshes is shown on the left hand side of figure
3.10. The quadrilateral element over-predicts the maximum fibre stress by
more than five times, when the simulation with the aligned linear triangles
is regarded as the reference. This simulation results in the highest punch
force in figure 3.11 as well. The mesh irregularity, the high fibre stress and the
high punch force indicate that the quadrilateral elements still exhibit locking in
unaligned meshes. The semi-quadratic triangular elements predict a maximum
fibre stress that is much closer to the aligned mesh results. Punch forces are
also significantly lower for this element, even lower than the punch forces
predicted by the aligned elements. The fibre stress and punch force are very
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Figure 3.11: Punch force.

sensitive to mesh configuration and fibre stiffness. Reducing the anisotropy by
lowering the fibre stiffness and refining the mesh will bring the results closer
together. However, the objective is to have a non-locking element that gives
accurate results for coarse meshes and highly anisotropic materials. The punch
force of the simulation, which uses linear triangles in an unaligned mesh, is
included in figure 3.11 to illustrate the unrealistic results for locking elements.
Punch forces and fibre stresses are easily over-predicted by a factor of 1000 in
this case.

The total punch displacement is imposed incrementally. A robust element
allows for large increments and short simulation times. The right hand side
of figure 3.10 shows the average punch displacement for each element type.
Reduced integration reduces the allowable increment size, while the multi-field
elements allow increments that are nearly twice as large. The difference is not
as extreme as in the 2D case discussed in section 3.3.2. The performance
is affected by other factors as well, in particular by the contact algorithm.
Multi-field elements increase the simulation time of a single increment by 10
to 15% compared to SRI elements. This results in a nett reduction of the total
simulation time of nearly 40% with the observed increase in increment size.
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3.5 Conclusions

Three remedies against intra-ply shear locking were investigated in this paper:
aligning the mesh, applying selective reduced integration (SRI) and using
multi-field elements. All fully integrated standard elements have to be aligned
with the fibre directions in the material to avoid locking. SRI and multi-
field elements are free of locking for any mesh configuration. SRI indicates
that only the fibre constituents of the material model are under-integrated.
The new multi-field elements combine the standard displacement degrees of
freedom with an additional field that interpolates the fibre strain. Choosing
strain instead of stress results in a more robust element in large deformation
simulations.

Aligning the mesh is the best option with respect to accuracy, but limits
the use of automatic mesh generation and makes implementation of multi-
layer elements impossible. Elements based on SRI and multi-field elements
underestimate the stiffness, typically from 5% down to 15% in this particular
study. The constraint counting method proved to be a useful method to predict
beforehand, the element’s accuracy and tendency to lock. The performance
of the different elements in large deformation simulations was tested as well.
The multi-field element allows for the largest step sizes, followed by the aligned
elements and then by the SRI elements.

A triangular multi-field membrane element was developed with a semi-
quadratic in-plane and a linear out-of-plane displacement field. This
combination improves the accuracy of the element and avoids contact problems
in 3D simulations. It is the best element to use in large deformations of
fibre reinforced materials in unaligned meshes, based on the results from this
analysis, where the element was tested in a 2D simulation and a realistic 3D
drape simulation.
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Chapter 4

A multi-layer element for
simulations of laminated
composite forming processes∗

Abstract

Continuous fibre reinforced thermoplastics offer a cost reduction compared to
thermosets due to promising fast production methods like diaphragm forming
and rubber pressing. Forming experiments of pre-consolidated four-layer 8H
satin weave PPS laminates on a dome geometry demonstrated that inter-
ply friction is a dominant parameter in forming doubly curved components.
Therefore, simulations of this process of sequential draping the individual
layers are invalid. A multi-layer element has been developed for efficient
simulations of laminated composite forming processes with only one element in
the thickness direction. Contact logic between the individual plies is avoided.
The simulations were validated against the experiments mentioned and agree
very well. The multi-layer membrane elements proved capable of predicting
the material instabilities during forming. They appeared to be unsuited for
realistic wrinkling simulations due to their lack of a bending stiffness.

∗This chapter is based on: R.H.W. ten Thije and R. Akkerman. A multi-layer element for
simulations of laminated composite forming processes. Manuscript submitted to Composites
Part A: Applied Science and Manufacturing, with R.H.W. ten Thije as the principal author
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4.1 Introduction

Continuous Fibre Reinforced Thermoplastics (CFRTP) have made their
way into the aerospace industry, both as structural and non-structural
components. Their usage will increase in the future due to the evolving
low cost manufacturing techniques for these products. The ability to weld
components in subsequent process steps is one of the main cost savers
[1, 2]. CFRTP components are typically thin-walled and primarily made by
forming layered pre-consolidated laminates through thermo-folding, pressing
or diaphragm forming. These processes can introduce unacceptable shape
distortions in the component upon forming, such as springback or wrinkling.
Reduction of these shape distortions can be achieved by optimising the product
and process conditions in the design phase. This requires accurate predictive
models that can include complex process conditions and sophisticated material
models. For these analyses, the finite element method is a well suited method.

Modelling each individual constituent of the laminate as a separate object is
(yet) computationally too expensive for forming simulations of fibre reinforced
materials. This discrete approach is limited to analyses on a mesoscopic
level [3–5]. Although fabrics are discontinuous at lower length scales, an
efficiently and accurately continuum model can be obtained by homogenisation
of the mechanical properties [6, 7]. The continuum approach has proven to
be successful and is widely used for forming simulations of fibre reinforced
materials [8–12]. In the semi-discrete approach, bar or truss elements
are added to standard continuum elements [13–15]. In this research, the
continuum approach was adopted.

Forming experiments of pre-consolidated thermoplastic laminates with
alternate lay-ups demonstrated that inter-ply friction is a dominant parameter
when forming doubly curved components (section 4.4). Therefore, simulations
of the process by sequential draping of the individual layers are invalid.
Stacking several plies with contact logic and an appropriate friction
characterisation between each layer is a logical next step. This approach was
successfully used by some researchers [16, 17]. Stacking elements will cause
models to grow rapidly. Combined with the computationally expensive contact
logic and associated instabilities, this approach can result in unacceptable
simulation times for large models.

Modelling the multi-layer laminate with a single element in the thickness
direction is computationally more attractive than modelling the layers
individually. The number of degrees of freedom decreases and a contact
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logic algorithm between the individual layers is avoided. Lamers [18, 19]
developed a triangular membrane element that contains multiple layers but
is connected to the global finite element system with only nine degrees of
freedom. The displacements of the individual layers were solved locally
by an energy minimisation algorithm. The resulting element is fast, but
failed to accurately capture the tool-ply interaction. This interaction can
be of significant importance when simulating the forming of a thermoplastic
laminated composite, as shown by Wijskamp [20, 21] and Soulat et al. [17]. In
his research, Wijskamp recommended to use global degrees of freedom for at
least the top and bottom ply of the multi-layer element for accurate modelling
of the tool-ply interaction. Based on these recommendations, a new multi-
layer element has been developed. The element can be regarded as a stacked
pile of elements, in which the contact logic is replaced by constraints on the
out-of-plane displacements. This element will be presented in the next section.

4.2 Multi-layer element

The multi-layer element presented here is an extension of the single-layer
membrane element that was presented in by ten Thije [22]. The out-of-plane
deformations are linear, while the in-plane deformations are of a quadratic
form. This results in an element that remains planar during forming, which
avoids midside node oscillations during simulations involving contact. The
higher order in-plane displacement fields are inevitable, because the intra-ply
shear locking problem has to be solved. Intra-ply shear locking is a numerical
artefact, resulting in unrealistically high fibre stresses and spurious wrinkling.
It can be solved either by using selective reduced integration or by using multi-
field elements [22]. Both solutions are used in this research. The two-layer
version of the element is shown in figure 4.1.

The layers of the multi-layer element do not separate during forming. Only
the top layer of the element includes out-of-plane displacements and has
15 displacement degrees of freedom. The displacement of the subsequent
layers is two dimensional and parallel to the top layer. These layers have
12 displacement degrees of freedom each. The multi-field version of the
element has an additional internal node, which contains the degrees of freedom
for the assumed fibre strain field(s). The three dimensional displacement
u of the element is easily decomposed into a rigid rotation G and an in-
plane displacement u’, because the element is plane. This decomposition is
graphically illustrated in figure 4.2. The element stresses and nodal forces
are evaluated in the xy-plane, where the separate layers of the multi-layer
element reduce to regular quadratic plane elements. Finally, the evaluated
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Figure 4.2: Decomposition of the element displacements into a rotation and
an in-plane displacement.

nodal reaction forces R are rotated to the global coordinate system.

4.2.1 Layer and interface mechanics

The nodal displacements of the element layers are all expressed in the same
local coordinate system after rotation to the xy-plane. The response of the
element is found by processing the layers one by one. Figure 4.3 shows the
evaluation of the layer with index i, attached to nodes p and q.
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Figure 4.3: Layer mechanics.

In this figure, σ denotes the internal layer stress and τ , the boundary
traction. The total reaction force vector Ri of the layer is given by:

Ri = R�
i + RIF

i−1 + RIF
i , (4.1)

where R�
i is the response of the layer material to the deformation. The forces

RIF
i−1 and RIF

i are contributions due to the interface tractions of the top
and bottom interface respectively. The deformations are evaluated using the
method introduced by ten Thije et al. [12]. The deformation of the layer is split
into a rotational part and a stretch part for each fibre family that is present
in the layer. This allows for exact tracking of the fibre directions during the
simulation and avoids spurious layer deformations. The method proved to be
accurate and robust in simulating large deformations in anisotropic materials.
After evaluation of the stress, the layer contribution to the nodal reaction force
is evaluated by:

R�
i =

∫
Vi

w
←
∇ : σi dVi, (4.2)

with w the element weight functions and Vi the layer volume.

The slip velocity vsl on the interface is found by:

vsl
i = v�

i+1 − v�
i , (4.3)

where v� denotes the layer velocity and i the layer counter. An appropriate
friction law relates the slip velocity to the interface traction τ i. The friction
can be of a Coulomb type if friction in dry fabrics is modelled or of a viscous
type when lubricated friction between thermoplastics is considered. A popular
model for lubricated friction is found by assuming that a film of a viscous
material with a thickness h is present between the two layers. Given the slip
velocity, this assumption results in the following shear rate γ̇ in the film:

γ̇i =
vsl

i

h
. (4.4)
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1 point, reduced volume integral
3 points, full volume integral
7 points, full surface integral

Figure 4.4: Gaussian quadrature scheme for the multi-layer element.

The traction τ is then given by

τ i = ηγ̇i, (4.5)

with η the viscosity of the polymeric film. The interface tractions are included
as boundary conditions on the element faces:

RIF
i =

∫
Γi

w · τ i dΓi, (4.6)

with Γ the surface area.

Gaussian quadrature schemes are used to evaluate the volume and surface
integrals. Figure 4.4 shows the locations of the integration points of three
different schemes. The three point numerical integration is used for full
integration of the material contribution to the nodal forces, equation (4.2).
The single point scheme is used for reduced integration of this equation. The
seven point scheme is used to evaluate the nodal forces due to the interface
tractions, equation (4.6). A six point scheme would be sufficient for this
equation, but the seven point scheme avoids over- and undershoot of tractions
at the nodes.

Forming simulations are generally split into smaller sub-steps or increments.
The layers of the element move with respect to each other during these
forming increments. The assumption that all layers remain parallel is only
valid for small relative displacements. This is solved by re-mapping the mesh
of the layers at the end of each increment. This process is schematically
illustrated in figure 4.5. Each forming increment consists of an iterative,
updated, Lagrangian procedure to find equilibrium, followed by a re-map of
the mesh to align all layers in the vertical direction before starting the new
increment. The re-map is a Eulerian operator, resulting in material movements
with respect to the mesh. The state variables, stored in the integration points,
are updated accordingly using a convection scheme. This convection scheme
will be discussed next.
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Figure 4.5: Re-mapping and convection of a two-layer element after a
Lagrangian step.

N1N1N1 N2N2N2 N3N3N3 N4N4N4

boundary flux

Figure 4.6: Second order convection. From left to right the initial state, the
mesh movement and the final state.

4.2.2 Convection

Incremental displacements of the element are evaluated using an updated
Lagrangian method. This is followed by a Eulerian step, in which the mesh
is updated. The state variables are updated accordingly, using a second order
convection scheme developed by Geijselaers [23]. The method convects linearly
distributed element data, which are allowed to be discontinuous across the
element borders. The convection is schematically illustrated in figure 4.6.
Nodes two and three move, causing boundary fluxes in the element data. These
fluxes are redistributed by the convection algorithm. The advection scheme is
local, conservative, shows little diffusion and is stable up to Courant numbers
of 0.95. This number indicates stability up to convective displacements of
almost the size of the element.

The convection algorithm has been implemented in the multi-layer element
routines. The element data of the three point integration scheme from figure
4.4 are directly suitable as input for the convection algorithm, because three
points fully determine a linear surface. The element data of the single and
seven point integration scheme are first converted to a linear field by a least
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Figure 4.7: Convection of element data through a doubly curved mesh.

squares fit and subsequently convected. The incremental integration point
values are found by interpolation and added to the integration point data.

The convection algorithm was tested on the spherical surface given by the
equations

R2 = (x− 2)2 + y2, R = 3, x = [0, 4], y = [−1.5, 1.5]. (4.7)

The initial values of the field to be convected are given by a Gaussian bump
equation:

f = 0.014((x−0.5)2+y2). (4.8)

The surface is randomly meshed with 1379 two-layer elements. The top
layer was fixed and the bottom layer was given a total displacement of 3 in
the direction tangential to the convection path indicated in figure 4.7. The
displacement was divided into 200 substeps. The maximum Courant number
during convection was 0.49. Figure 4.7 shows the meshed surface with the
initial and convected data plotted as vertical displacements.

The initial and convected data values along the convection path were
extracted from the results and plotted in figure 4.8. The convected data was
shifted by the total displacement to compare the initial and convected results.
The results indicate that the data is accurately convected, given the type of
computation and the level of discretisation. The values shown in figure 4.7
and 4.8 are nodal values, extrapolated from the integration points. The data
would have been discontinuous across the element boundaries if the integration
point values would have been plotted.
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Figure 4.8: Initial and convected values of the Gaussian bump.

4.3 Material characterisation

Material characterisation experiments were performed on four-layered PPS
(polyphenylene sulfide) laminates, reinforced with a glass fibre 8H satin weave
(Ten Cate Cetex c© SS303). The intra-ply properties were investigated in the
research of Lamers [18], using trellis frame experiments. The inter-ply friction
properties were determined with pull-out experiments. The experimental
results, the material models used to represent the response and the fitted
material parameters are given in the next section.

4.3.1 Intra-ply properties

The trellis frame experiment is used to impose a pure shear deformation on a
biaxial fabric. The trellis frame rig is shown on the left in figure 4.9. The fibre
directions are aligned with the frame and the upper crosshead moves with a
constant velocity in the vertical direction. The rate of deformation increases
during the test, due to the frame geometry. Several yarns near the central
region were removed to reduce wrinkling in the fabric. The right hand side of
figure 4.9 shows the fabric after the experiment.

Figure 4.10 shows the experimental results found by Lamers [18], using trellis
frame experiments, at a temperature of 300 oC and a crosshead velocity of 1000
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Figure 4.9: The trellis frame experiment. On the left the frame and composite
prior to testing and on the right the composite after testing [18].
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Figure 4.10: Experimental [18] and simulated response of the trellis frame
experiment. The error bars represent the standard deviation.
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layer thickness [mm] 0.2375 η0 [MPa·s] 1.55
fibre volume fraction (2x) [-] 0.25 C [ms] 6.2
matrix volume fraction [-] 0.50 n [-] 0.2
fibre stiffness [GPa] 72.4

Table 4.1: Intra-ply properties of the 8H satin weave PPS composite and fitted
material parameters at 300 oC.

mm/s. The material is characterised by using a material model, which consists
of several material fractions. The deformation is equal for each fraction j and
each fraction contributes to the total stress proportional to its volume fraction
νj :

σ = Σjνjσj , (4.9)

where the sum of the volume fractions equals unity. The volume fraction of the
biaxial reinforcement is estimated at 50% and is modelled as linearly elastic
with a Young’s modulus of 72.4 GPa. This value is found in literature for
E-glass fibres [24]. The matrix material is modelled as a viscous material, for
which the stress is given by

σ = pI + 2ηDd, (4.10)

in which p denotes the hydrostatic pressure, I the second order unit tensor,
η the viscosity and Dd the deviatoric part of the rate of deformation tensor.
The viscosity is shear rate dependent and is modelled with a Cross model:

η =
η0

1 + (Cγ̇)n
, (4.11)

in which η0, C and n are material parameters and γ̇ the equivalent shear rate
given by:

γ̇ =
√

2
3D : D. (4.12)

The fitted material parameters are found in table 4.1 and the simulated
response of the trellis frame experiment is plotted in figure 4.10.

4.3.2 Tool-ply and inter-ply friction

Tool-ply friction and inter-ply friction were measured using pull-out
experiments. The pull-out setup was designed to experimentally determine
the influence of normal pressure, temperature and relative velocity on the
frictional behaviour. Pre-consolidated laminates were clamped between two
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Figure 4.11: Viscosity of the resin film and the interface traction.

film thickness [mm] 0.02 η0 [Pa·s] 750
C [s] 0.833 n [-] 0.75

Table 4.2: Cross model parameters for the tool-ply and inter-ply friction model
at 305 oC.

heated polished platens. Depending on the type of friction to be measured,
the complete laminate or a set of plies were then pulled from between these
platens. Details of the experimental setup were presented by Akkerman et al.
[25].
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The tool-ply and ply-ply frictional behaviour are assumed to be equal.
Experiments indicated that the steady state friction on these two surface
combinations is almost equal with an observed maximum deviation around
10%. The normal pressure on the laminate, exerted by the tools, is relatively
low during the most part the press cycle. Pressure starts to build up only at
the end of the cycle. For this reason, the experimental results at a relatively
low normal pressure of 20 kPa were used for characterisation of the friction.

Fully hydrodynamic lubrication is assumed between two surfaces, which
are in contact. A thin film of resin with an assumed constant thickness is
sheared by the displacement of the surfaces, resulting in a traction τ given by
equation (4.5). The assumption of fully hydrodynamic lubrication is confirmed
by the work of Murtagh [26] and successfully used in simulations done by other
researchers [17, 27]. The viscosity of the resin film is modelled with the Cross
model given by equation (4.11). The parameters of this model and the assumed
film thickness are given in table 4.2.

Figure 4.11 shows the experimental results and the simulated results of the
pull-out experiments. The experiments were performed at a normal pressure
of 20 kPa and a temperature of 305 oC. Experiments were conducted at a
constant and a varying pull-out velocity. The experiments with a constant
velocity were performed in triplicate and the averaged results are plotted in
figure 4.11. The results of two additional experiments, in which the pull-out
velocity was varied, are plotted in this figure as well. The viscosity of the resin
film in the experiments is found by assuming the same film thickness as used
in the model. The lubricated friction model, combined with the Cross model
for the film viscosity, gives a proper description of the experimental results.

4.4 Drape simulations and validation

Forming experiments on a dome geometry were performed at Fokker AESP
in Hoogeveen, the Netherlands. Four-layered glass weave reinforced PPS
laminates with varying lay-ups were formed using the Rubber Press Forming
(RPF) process. Shear angles and contours of these products were determined
and compared with simulation results.

4.4.1 Experimental setup

Ten Cate Advanced Composites, Nijverdal, the Netherlands, supplied a
dedicated glass fibre 8H satin weave for experiments. A standard Cetex c©

SS303 weave was equipped with blue tracer yarns that were woven into the
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Figure 4.12: Geometry of the dome mould.

press velocity 1 [mm/s] 100 laminate temp. [oC] 325
press velocity 2 [mm/s] ∼ 10 heating time [s] 180
blank diameter [mm] 217.5 steel mould temp. [oC] 166

Table 4.3: Parameters of the experimental setup.

glass weave in a 10 x 10 mm grid pattern. The volume fraction of the tracers
is less than 5% and their mechanical influence during forming is considered to
be negligible. The experimental setup and the dimensions of the mould are
shown in figure 4.12.

The circular blanks with a diameter of 217.5 mm were cut from pre-
consolidated laminates. They were loosely clamped at 4 points on the
circumference and heated by infra-red panels. The temperature of several
laminates was logged using a thermocouple wire. It took approximately 80
seconds for the laminate to reach 300 oC. It was then heated for another 100
seconds, during which the temperature gradually increased to 325 oC. The
laminate was then formed by moving down the rubber mould with a speed of
100 mm/s. A few millimetres upon closing, the speed drops to approximately
10 mm/s. The press then switches to a pressure controlled movement.

Four different lay-up configurations were formed in triplicate. They range
from a Cross-Ply (CP) [0/90,90/0]s configuration to a Quasi-Isotropic (QI)
[0/90,45/-45]s configuration with increments of 15o. The lay-ups are presented
in table 4.4. They will be referred to as laminate A through D. The parameters
of the experimental setup are found in table 4.3.
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4.4.2 Finite element simulation setup

The multi-layer element was implemented in an in-house finite element code
written in Matlab c©. One quarter of the blank was meshed with an
unstructured mesh of 392 multi-layer elements. Symmetry was prescribed
at the axes. The material model of the individual plies and the corresponding
parameters are found in section 4.3.1 and table 4.1 respectively. The inter-ply
frictional model and the corresponding parameters are found in section 4.3.2
and table 4.2 respectively. Contact between the mould and the laminate is
modelled using a penalty formulation. Tool-ply friction was not implemented
in the experimental FE code. The in-plane ply properties and the ply-ply
friction are expected to dominate the formability of the laminated composite.
The closing velocity of the female mould was set to 100 mm/s.

4.4.3 Experimental results

The experimental results shown in figure 4.13 clearly indicate that the
behaviour of the layered composites heavily depends on the lay-up. The cross-
ply laminate was formed without wrinkles. Laminate B shows a few small
wrinkles. The number of wrinkles and their size increases if the offset in the
lay-up angle increases. The QI laminate shows severe wrinkling. The wrinkling
patterns and wrinkle sizes were very consistent among different laminates with
the same lay-up. The contour of the deformed shape tends towards a more
circular shape when the offset in the lay-up angle increases. This is illustrated
in figure 4.14, where in each quadrant the deformed contour of one of the
experimental products has been plotted. The dotted line is a circle that has
been fitted on the deformed contour of the QI laminate.

Both layers of the cross-ply laminate deformed equally in the bias direction,
as seen in figure 4.14. The maximum deviation from the circle is approximately
6 mm. The deformed contour of the QI laminate is nearly circular. This
indicates that there was hardly any inter-ply slip, otherwise the individual
plies would have deformed in their bias direction as well. This deformation
was blocked by the stiff fibres in the other plies. The loads are transferred
between the individual plies by the interface tractions. As a consequence,
severe wrinkling occurred.

The movement of the rubber mould was stopped at 10.6, 7.3 and 4 mm
upon closing for three additional QI laminates, to visualise the forming of
wrinkles. Figure 4.15 shows the development of two wrinkles in the flange.
This is the point where the laminate was loosely clamped and most wrinkles
are initiated. At the clamping point, the laminate is not as thoroughly heated
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A. [0/90,90/0]s, cross-ply
B. [0/90,75/-15]s
C. [0/90,60/-30]s
D. [0/90,45/-45]s, quasi-isotropic

x

y 0o

90o

Table 4.4: The four lay-ups used in the experiments.

A. [0/90,90/0]s (CP) B. [0/90,75/-15]s

C. [0/90,60/-30]s D. [0/90,45/-45]s (QI)

Figure 4.13: Top view of the four composite laminates after forming.
Wrinkling increases with an increasing offset in lay-up angle.
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Figure 4.14: Contours of the experimental products. The dotted line is a circle
fitted on the QI laminate contour.
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Figure 4.15: Development of wrinkles in a QI laminate at different stages
during the rubber pressing process.
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as the rest of the composite. This can be observed by examining the local
laminate colour. The colour of the PPS matrix material evolves from a creamy
colour to a brown colour during the RPF process. The colour at the clamping
points is less brownish, indicating that the temperature during the heating
process was lower. However, the material was still heated well above the
melting temperature, because local ply slip and laminate deformation has been
observed at these points. Local temperature measurements could provide more
information on the level of heating. In these particular experiments, it seems
that the clamping points do not significantly increase the number and size of
the wrinkles. However, they do determine the wrinkling pattern. Wrinkles
initiate near the clamping points.

Shear angles between the two fibre families in the top layer have been
measured along a line, intersecting with the dome surface in the bias direction.
The results are depicted in figure 4.16. The location of the line is indicated
in the top left sub-figure. A zero shear angle indicates that there is no bias
deformation, a shear angle of -10o indicates that the angle enclosed between
the two fibre families decreased from the original 90o to 80o degrees. The
conclusions that can be drawn from this figure agree with the conclusions
drawn from the contour plots. The cross-ply laminate shows significant in-
plane shear deformation, resulting in a smooth product without wrinkles. As
the offset in the lay-up angle increases, the inter-ply friction restricts this
deformation mode and the laminate starts to wrinkle. The location of the
wrinkles is indicated in figure 4.16 by the thick black line at the bottom of the
figure.

4.4.4 Simulation results

The simulation results of the forming of the cross-ply laminate agreed very
well with the experimental results. The maximum deviation found between
the deformed contours of the simulation and the experiment was 0.25 mm.
The predicted shear angle is shown in figure 4.16. The agreement between the
simulated and experimentally obtained shear angles is reasonably good. The
simulation slightly over-estimates the shear deformation. The experimental
results show that there is no significant shear deformation in a circular area
with a radius of 20 mm around the centre of the dome. This could be a
result of rapid cooling of the laminate. It touches the relatively cold steel
mould first and the subsequent solidification restricts the formability. Another
explanation could be the presence of tool-ply friction. Both effects were
neglected in the simulation.
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Figure 4.16: Shear angles of the top layer along the indicated line L at 135o.
The location of the wrinkles is indicated by the thick black line. The error bars
indicate the standard deviations. Severe wrinkling of the QI laminate allowed
the shear angle measurement at the last four points of one product only. This
causes the absence of standard deviation at these points.

Two simulated deformed shapes of the QI laminate are shown in figure 4.17.
The figures are snapshots, taken 10 and 5 mm before completion of the process,
respectively. The compressive membrane stresses induced by the forming into
the doubly curved shape cause material instabilities and the laminate starts
to wrinkle. The top figure shows one large and one small wrinkle, just beside
the lines of symmetry. This is caused by the absence of bending stiffness in
the membrane elements. The wrinkles initiate along lines where the mesh is
the least unstructured.
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w w
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Figure 4.17: Forming simulation of a quasi-isotropic laminate at 10 and 5 mm
upon mould closure.
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Figure 4.18: The stored membrane energy is equal for both laminates. The
bending energy of the laminate on the left is higher.

The bottom figure shows that two more wrinkles have developed as a result
of increasing compressive stresses. Instead of the growth of the existing
wrinkle, the large wrinkle has split into multiple smaller wrinkles. This
behaviour is also due to the absence of bending stiffness. In figure 4.18,
two cross-sections of laminates are plotted with an equal thickness, length �
and projected length L. This results in an equal amount of membrane energy
stored in the laminates, if elastic deformation is assumed. The bending energy
stored in the multiple small wrinkles in the laminate on the left is higher than
the bending energy stored in the large bend in the laminate on the right.
The preferred deformed shape of the laminate then would be the latter one.
However, simulations with membrane elements neglect the bending stiffness
and will often deform in a similar manner as the laminate plotted at the left
hand side of figure 4.18.

4.5 Discussion

Shell elements should be used for a realistic wrinkling behaviour in simulations.
The element size must at least be one third of the smallest wrinkle that can
occur in the composite. Altogether, this will increase the simulation time
significantly. In addition to that, characterisation of the bending behaviour of
thermoplastic laminates is still in its infancy. An alternate solution would be
the use of a wrinkling indicator. It is often sufficient to predict the occurrence
of wrinkling. A wrinkling indicator predicts wrinkling, based on the local stress
state in the element and the local mesh geometry. A very rough wrinkling
indicator is the second principal stress S2. The plane stress assumption causes
the third principal stress to be absent. The second principal stress is the
minimum value of the two principal stresses left. Theoretically, wrinkling
occurs if this stress becomes negative and bending stiffness is neglected, like in
membrane elements. The minimum value for S2 found during the simulations
is plotted in figure 4.19. The simulations predicting higher compressive stresses
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Figure 4.19: Minimum 2nd principal stress: a rough wrinkling indicator.

S2 indeed correspond to press trials with more severe wrinkling. The values
of S2 for the laminates B and D increases significantly between 15 and 10 mm
upon mould closure. Wrinkles start to develop in the actual specimen at this
stage of the forming process as well. The compressive stress in the wrinkle-free
cross-ply laminate, laminate A, is considerably lower.

The development of a reliable and robust wrinkling indicator is not a trivial
task, but can speed up the simulations significantly. This allow for fast
simulations with relatively coarse meshes, which can still provide information
on the feasibility of the desired mould shape or lay-up. Dessenberg and Tucker
[28] successfully used forming limit diagrams to predict the presence of defects
after the preforming of random fibre mats. These forming diagrams were
constructed using principal stretch ratios and indicate the feasible forming
regions. Wrinkling or tearing is likely to occur outside the feasible region, with
an increased risk if the distance to the feasible region increases. Skordos et al.
[15] numerically and experimentally investigated the formability of a woven
fabric, which was draped on a hemispherical mould. A relation between the
wrinkling strain, a compressive principal strain, and the amount of wrinkles
in the experimental product was shown in this research. Lin et al. [29]
successfully minimised the wrinkling in a textile by varying blankholder forces.
Lin et al. stated that the amount of wrinkling depends on the compressive
forces and the shear deformation of the fabric. The question rises whether
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the two principal strains are sufficient as input parameters for the forming
limit diagram of fibre reinforced sheet material. Although successful in metal
forming simulations, a more complex diagram might be necessary to define
the forming envelope of these highly anisotropic materials. Virtual tests can
provide useful insight on this aspect as well. Complex numerical models on a
repetitive unit cell level can accurately mimic the response of a fabric and can
avoid experimental tests that are elaborate or difficult to perform [5, 30].

The intra-ply shear locking problem has been solved successfully. The fibre
stresses are not unrealistically high, as in the research of Lamers [18]. Lamers
observed fibre stresses of 3 GPa during drape simulations on a double dome
geometry. The maximum fibre stresses that occurred during the simulations
in this research typically ranged from 5 MPa for the cross-ply laminate to
50 MPa for the QI-laminate. A trial simulation, with the selective reduced
integration switched of, resulted in fibre stresses in the GPa-range. The
elements using selective reduced integration and the multi-field elements gave
nearly similar results. However, the convergence behaviour of the multi-field
elements is significantly better and hence allowed for larger incremental mould
displacements. These observations correspond to the conclusions presented by
ten Thije and Akkerman [22].

The execution speed of the experimental Matlab c© code is poor. The
running times of the simulations using the multi-field elements typically ranged
from 20 to 24 hours on a PC with a 3400 MHz AMD processor and 1 GB of
RAM. The simulations that used elements with selective reduced integration
were typically 30 to 60% slower. Based on experiences in the past, a dedicated
code can improve the execution speed with at least two decades.

4.6 Conclusions

Inter-ply friction during forming of pre-consolidated laminated composites
is of significant importance. Quasi-isotropic laminates ([0/45,45/-45]s) that
were formed using the rubber press forming process, showed hardly any inter-
ply slip due to high interface traction. This caused severe wrinkling of the
laminate. The inclusion of inter-ply friction is required for accurate forming
simulations of these pre-consolidated laminated composites. Therefore, a
multi-layer membrane element was developed. The top layer of this element
has out-of-plane displacement degrees of freedom, while the other layers of the
element can only move in-plane, parallel to the top layer. This avoids the use
of a computationally expensive contact logic algorithm between the layers,
as would be necessary for stacked elements. The simulation results agree
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very well with the experimental results for a cross-ply laminate ([0/90,90/0]s),
where wrinkling is absent.

The simulation with the membrane multi-layer element accurately predicted
the point at which wrinkling started. Accurate and realistic simulations of
the wrinkling behaviour is not possible, because the elements lack bending
stiffness. Shell elements should be used for this, but are expected to
significantly increase the simulation times. It is recommended to develop and
implement Forming Limit Diagrams (FLD) instead. Predicting the occurrence
of defects is more important than the exact shape of the defect. A procedure
on how to construct such an FLD for a continuous fibre reinforced material
is not available yet. The assumption that the FLD depends on the principal
strains only, as in the metal forming approach, is most doubtful for these
materials.

The intra-ply shear locking problem has been solved successfully. No
unrealistically high fibre stresses were observed. Both elements using selective
reduced integration and the multi-field elements were used in this research.
Both gave similar results, but the multi-field element allows for larger
incremental mould displacements and hence significantly shorter simulation
times.
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Chapter 5

Conclusions

Forming processes of single-layer and multi-layer composite materials have
been successfully simulated using the Finite Element (FE) method. A
new non-linear FE formulation allows for accurately simulations of large
deformations of highly anisotropic materials. Solutions were presented to
prevent intra-ply shear locking, a numerical artefact in composite forming
simulations. A multi-layer element was developed for efficient simulations of
laminated composite forming processes with only one element through the
thickness.

Classical stress rate types, such as the Jaumann rate, are inadequate for
continuum approaches to composite forming simulations due to the incorrect
updating of the fibre directions. Instead, the deformation gradient should be
decomposed into a rotation tensor and a stretch tensor for each fibre family
present in the material. Stresses are computed using invariant local stress and
stiffness tensors. This leads to a simple and straightforward implementation
of constitutive laws.

Consistent tangent matrices improve the speed of complex, implicit
simulations significantly. For highly anisotropic materials, even minor
inconsistencies can cause the solution to diverge. Consistent tangents were
presented for generalised anisotropic materials and plastically deformable
fibres, resulting in quadratic convergence of the simulations for arbitrary
deformation gradients and arbitrary degrees of anisotropy. The use of non-
linear strain definitions improves the robustness of simulations. Poorly shaped
elements behave significantly better when using the right Cauchy-Green strain
definition instead of a linear strain definition.
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Intra-ply shear locking can be solved by aligning the mesh with the
fibre directions, by applying selective reduced integration (SRI) or by using
multi-field elements. SRI indicates that only the fibre stress terms of the
material model are under-integrated. The new multi-field elements combine
the standard displacement degrees of freedom with an additional field that
interpolates the fibre strain. The constraint counting method proved to be a
useful method to predict the element’s accuracy and tendency to lock.

Mesh alignment is impossible in multi-layer elements, leaving SRI and multi-
field elements as the only options in simulations of laminated composites. SRI
can be easily implemented, but the numerical performance of the multi-layer
elements in large deformations is significantly better. The elements based on
SRI and multi-field elements underestimate the stiffness, typically from 5% to
15% in this particular study.

Drape experiments of a laminated composite on a dome geometry
confirmed the significance of the inter-ply friction during forming. Quasi-
isotropic laminates ([0/45,45/-45]s) showed hardly any inter-ply slip due
to high interface traction caused by the rapid forming process. As a
consequence, severe wrinkling occurred. A multi-layer element was developed
to simulate the forming process. This multi-layer element avoids the use of
a computationally expensive contact logic algorithm between the individual
layers and is faster than a model in which a number of elements are stacked.
The simulation results agree very well with the experimental results for a
[0/90,90/0]s lay-up where wrinkling is absent.

Membrane elements were chosen based on simulation time arguments
and their use is justified when stretching of the laminate is the dominant
deformation mechanism. Membranes can therefore not predict realistic
wrinkling shapes. Shell or solid elements can, but will increase the simulation
time significantly. In studies on the feasibility of a design, predicting the
occurrence of defects is more important than the exact shape of the defect.
Forming Limit Diagrams (FLD) can therefore offer a solution. They allow for
fast simulations with coarse meshes using membrane elements and hence for
optimisation of the design. A procedure on how to construct such an FLD for a
fibre reinforced material is not readily available and requires further research.



Appendices

These appendices present a detailed look into the most important material
models and boundary conditions that were used in the finite element
simulations within this research. Specifically, the derivation of consistent
tangent matrices is addressed, since these significantly improve convergence
speed and hence simulation times of implicit finite element simulations. For
highly anisotropic materials, consistent tangents are essential for convergence.

Appendix A summarises the basic continuum mechanics equations that were
frequently used in this thesis. Appendix B presents the equation for the finite
element nodal forces and the basic equation for the consistent tangent. Both
topics, continuum mechanics and the finite element formulation, are widely
covered in literature. Therefore, the equations in these appendices are just
listed without explanation.

The uni-axial fibre model is presented in the appendices C and D. Appendix
C concerns elastic deformations only and in appendix D, plastic deformations
are included as well. A generalised anisotropic model for elastic deformations
is given in appendix E. The mathematical elaboration of the Mooney-
Rivlin material model is given in appendix F. The Mooney-Rivlin model
is widely used for simulations with (nearly) incompressible rubber-like solids.
The appendices present consistent tangents in finite element formulations.
Examples that prove the consistency of the tangents are given.

The consistent linearisation of boundary conditions can decrease simulation
times significantly, especially when large deformations are involved. This is
done for a uniform surface pressure on planar three node elements in appendix
G.

The final appendix, appendix H, summarises the algebraic tensor operations
that were frequently used in these appendices.
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Continuum mechanics

This appendix contains a number of continuum mechanics equations that are
frequently used in this thesis. The equations are based on the work of Truesdell
and Noll [1], of which a more recent version can be found in the work of Bowen
and Wang [2] or Besseling and van der Giessen [3].

Upon deformation, an arbitrary initial material vector x0 transforms into
x. The relation between these two vectors is given by the second order
deformation tensor F, which is found by taking the post-gradient of the
transformed vector with respect to the initial coordinates:

F = x
←
∇0 (A.1)

The time derivative of F is given by:

Ḟ = L · F, (A.2)

with L the velocity gradient:

L = v
←
∇ (A.3)

and v the velocity. The velocity gradient can be split into a symmetric rate
of deformation tensor D and a skew-symmetric spin tensor W:

L = D + W, (A.4)

with

D = 1
2(v
←
∇+

→
∇v) (A.5)
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and

W = 1
2(v
←
∇−

→
∇v). (A.6)

An initial vector a0 is transformed by the deformation gradient F to the current
state a with length �. Based on that relation, the rate of change of the length
� can be expressed using the rate of deformation tensor D,

�̇

�
=

1
�2

a ·D · a. (A.7)

The determinant of F is also known as the Jacobian J or the volume ratio,

J = det(F) (A.8)

=
V

V0
,

with V the specific volume. The conservation of mass can be expressed as:

ρJ = c, (A.9)

in which ρ denotes the density. Hence, the relation between the rates of ρ and
J is given by:

ρ̇

ρ
= − J̇

J
. (A.10)

Based on geometrical considerations, the volume ratio can be expressed using
the rate of deformation tensor D as well:

J̇

J
= trace (D). (A.11)

Two Cauchy-Green strain tensors are frequently used as a strain measure, e.g.
the left Cauchy-Green strain tensor:

B = F · FT (A.12)

and the right Cauchy-Green strain tensor:

C = FT · F. (A.13)

Hence, the rate of the left Cauchy-Green strain tensor B can be expressed as:

Ḃ = L ·B + B · LT (A.14)

and the rate of inverse of B as:

Ḃ
−1

= −B−1 · L− LT ·B−1. (A.15)

The rate of the right Cauchy-Green strain tensor C is given by

Ċ = 2FT ·D · F. (A.16)
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Appendix B

Finite element formulation

The finite element method is widely documented in literature. A few well-
known authors are Zienkiewicz, Taylor, Belytschko, Hughes and Cook [1–4].
Therefore, this appendix presents only the final equations for the finite element
nodal forces and the basic equation for the consistent tangent, as derived by
Huétink [5].

B.1 Nodal forces

The starting point for the evaluation of the nodal forces is the equilibrium
equation. After weighing, integration by parts and applying Gauss’ theorem,
equilibrium of the finite element system is given by:

∫
V

w
←
∇ : σ dV =

∫
Γ
w · t dΓ, (B.1)

where σ is the Cauchy stress, w are the element weight functions and t is
the traction on the boundary surface. The volume is denoted by V and the
boundary surface by Γ.

B.2 Consistent tangent

The rate form of equation (B.1) in the current configuration is given by

∫
V

(
w
←
∇ : σ̇ −w

←
∇ · v

←
∇ : σ+w

←
∇ : σ J̇

J

)
dV = (B.2)∫

Γ
w · ṫ + w · t(v ·

←
∇)Γ dΓ,
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where v denotes the velocity, J the Jacobian or the volume ratio and (v ·
←
∇)Γ

the rate of change of unit surface area. The left hand side of equation (B.2)
represents the consistent linearisation of the internal forces with respect to
time:

K =
∫

V

(
w
←
∇ : σ̇ −w

←
∇ · v

←
∇ : σ + w

←
∇ : σ J̇

J

)
dV. (B.3)
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Appendix C

Uni-axial fibre model

A method to implement non-linear elastic deformations of uni-axial fibres in
finite element simulations is developed in this section. The Cauchy stress
is given and the consistent tangent matrix is derived. The consistency of
the tangent is demonstrated in a one element example. A second example
illustrates that the consistent tangent matrix becomes non-symmetric if
density changes of the material are ignored in plane strain conditions.

C.1 Cauchy stress

The deformation gradient F is decomposed into a stretch tensor G and a
subsequent rotation R:

F = R ·G. (C.1)

This decomposition is illustrated in figure C.1.

G R

τ σ

a0

�
�0
a0

a

Figure C.1: Decomposition of the fibre deformation in a stretch part and a
subsequent rotation.
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In this figure, σ denotes the Cauchy stress tensor and τ the local, invariant
stress tensor. This local stress tensor τ is given by

τ =
ρE�2

2ρ0�60
a0a0a0a0 : (C− I), (C.2)

in which ρ denotes the density, E the Young’s modulus of the fibre, � the
length of the fibre and C the right Cauchy-Green tensor. The Cauchy stress
is found by rotating the local stress tensor

σ = R · τ ·RT . (C.3)

The Cauchy stress is used in the evaluation of the nodal forces, given by
equation (B.1).

C.2 Consistent tangent

The starting point is the tangent of the finite element nodal forces, given by
equation (B.3). This equation contains the rate of the Cauchy stress σ̇, which
is found by differentiating equation C.3 with respect to time:

σ̇ = Ṙ · τ ·RT + R · τ̇ ·RT + R · τ · ṘT
(C.4)

The integrant of the tangent matrix (B.3) can now be rewritten as

w
←
∇ : σ̇−w

←
∇ · v

←
∇ : σ + w

←
∇ : σ J̇

J = w
←
∇ : Ṙ · τ ·RT︸ ︷︷ ︸

a

+ (C.5)

w
←
∇ : R · τ · ṘT︸ ︷︷ ︸

b

+w
←
∇ : R · τ̇ ·RT︸ ︷︷ ︸

c

−w
←
∇ · v

←
∇ : σ︸ ︷︷ ︸

d

+w
←
∇ : σ J̇

J︸ ︷︷ ︸
e

.

Evaluation of the parts a and b requires the rate of rotation tensor Ṙ.
Differentiating both sides of equation (C.1) with respect to time and re-
arranging results in

Ṙ = Ḟ ·G−1 −R · Ġ ·G−1. (C.6)

The time derivative of F is given by

Ḟ = L · F, (C.7)

with L the velocity gradient:

L = v
←
∇ (C.8)
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The stretch tensor G relates the current length of the fibre to the initial length:

G · a0 = �
�0

a0. (C.9)

The inverse, G−1 and the time derivative Ġ hence satisfy, respectively,

G−1 · a0 = �0
� a0 (C.10)

and

Ġ · a0 = �̇
�0

a0. (C.11)

The rate of rotation tensor Ṙ can now be written as:

Ṙ = L ·R−R · Ġ ·G−1 (C.12)

= L ·R− �̇
�R.

Evaluation of the parts a and b of equation (C.5) results in:

a+ b = w
←
∇ : (Ṙ · τ ·RT + R · τ · ṘT

) (C.13)

= w
←
∇ : (L ·R · τ ·RT + R · τ ·RT · LT − 2 �̇

�R · τ ·RT )

= w
←
∇ : v

←
∇ · σ︸ ︷︷ ︸

a1

+w
←
∇ : σ ·

→
∇v︸ ︷︷ ︸

a2

−w
←
∇ : 2 �̇

� · σ︸ ︷︷ ︸
a3

.

The parts a1, a2 and d can be combined by making use of the operations given
by the equations (H.1) and (H.2):

a1 + a2 + d = w
←
∇ : v

←
∇ · σ + w

←
∇ : σ ·

→
∇v−w

←
∇ · v

←
∇ : σ (C.14)

= (
→
∇w · v

←
∇+

→
∇w ·

→
∇v−w

←
∇ · v

←
∇) : σ

=
→
∇w · v

←
∇ : σ︸ ︷︷ ︸

d1

.

Differentiating the local stress τ of equation (C.2)with respect to time results
in

τ̇ = 4H : Ċ + τ (2
�̇

�
+
ρ̇

ρ
), (C.15)

with

4H =
ρE�2

2ρ0�60
a0a0a0a0. (C.16)
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Evaluation of part c of equation (C.5) now gives

c = w
←
∇ :

{
R · (4H : Ċ + τ (2

�̇

�
+
ρ̇

ρ
)
) ·RT

}
(C.17)

= w
←
∇ : (R · 4H : Ċ ·RT )︸ ︷︷ ︸

c1

+w
←
∇ : 2 �̇

�σ︸ ︷︷ ︸
c2

+w
←
∇ : ρ̇

ρ · σ︸ ︷︷ ︸
c3

.

The combination of a3, c2, c3 and e is equal to zero (A.10):

a3 + c2 + c3 + e = w
←
∇ : (−2 �̇

�σ + 2 �̇
�σ + ρ̇

ρσ + J̇
J σ) (C.18)

= 0.

Using the equations (A.16), (H.4), (H.5) and (H.2), c1 can be expressed as

c1 = w
←
∇ : (R · 4H : Ċ ·RT ) (C.19)

=
ρE�2

2ρ0�60
w
←
∇ : (R · a0a0 · Ċ · a0a0 ·RT )

=
ρE�2

ρ0�60
w
←
∇ : (R · a0a0 · FT ·D · F · a0a0 ·RT )

=
ρE�2

ρ0�60
w
←
∇ : (

�0
�
· aa ·D · aa�0

�
)

=
ρE

ρ0�40
(w
←
∇ · aa) : (aa ·D)

=
ρE

ρ0�40

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
.

Finally, the tangent matrix of the uni-axial fibre model consists of the parts
c1 and d1 found in the equation (C.19) and (C.14)

K =
∫

V

[
ρE

ρ0�40

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
+ (C.20)

→
∇w · v

←
∇ : σ

]
dV.

C.3 Application

The uni-axial fibre model has been implemented in Matlab c©. Figure C.2
shows the initial and final, deformed shape of a one element simulation. The
initial width and height of the element is 1 mm. The fibres are oriented at 0o,
45o and -45o with respect to the x-axis. The Young’s modulus of the fibres
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a0 b0
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a b
c

F

F

x

y

Figure C.2: Initial and final configurations of an element with three fibre
families.

was set to 1 MPa and the applied force was 1
2

√
2 N. The triangle has a linear

displacement field and an initial thickness of 1 mm. The volume of the element
is constant during the simulation and plane stress conditions are assumed.

A Newton-Raphson procedure was used to find the solution of this non-
linear problem. The error norm ε after each iteration i can be expressed as a
function of the previous error norm:

εi = αεni−1. (C.21)

The convergence rate depends on the convergence factor α and the convergence
power n. A convergence power value of n = 1 indicates linear convergence
and the error norm will decrease by the factor α each iteration. A value of
n > 1 indicates superlinear convergence. The error norm will be powered
to the value of n in each subsequent iteration, resulting in an exponential
sequence and high convergence speeds. The Newton-Raphson scheme shows
quadratic convergence with n = 2, provided the objective function is linearised
consistently and the initial value is sufficiently close to the objective value.

Figure C.3 shows the error norms during the iterative process of this
simulation. The unbalance norm εu and the displacement norm εd are given
by:

εu =
‖R− F‖
‖R‖ εd =

‖�u‖
‖u‖ , (C.22)

where R are the reaction forces, F the applied nodal loads, �u the
displacement found during the iteration and u the total displacement. The
slope that corresponds to a quadratically converging sequence is indicated



100 Appendix C. Uni-axial fibre model

1 2 3 4 5 6 7 8 9 10

-10

-1

-0.1

 

 

iteration

lo
g

(ε
)

force
displacement

machine precision

1

α = 1

n = 2

Figure C.3: Convergence plot of the one element test. The slope n = 2
indicates quadratic convergence.

as well. Figure C.3 shows that the convergence rate is quadratic from the
third/fourth iteration onwards until the solution reaches the machine precision,
which was 2.2 · 10−16 for the double precision real on the PC used.

Table C.1 shows the approximated values of the horizontal displacement
of the top node and the convergence power of the displacement norm. The
convergence power value n is found by rewriting equation (C.21) and by
assuming that α = 1:

n =
log εi

log εi−1
. (C.23)

Initially, the convergence speed is superlinear due to the large displacements
and strain increments. It becomes quadratic from the fourth iteration onwards.
The number of significant digits doubles each iteration and machine precision
is reached within four iterations. The error norm levels once the machine
precision has been reached, resulting in a convergence power value of one.
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iteration u [mm] n

1 1.750 000 000 000 001 -
2 1.216 051 380 773 097 1.60
3 1.030 015 264 088 182 1.83
4 1.058 502 507 917 225 1.84
5 1.086 982 862 613 517 1.98
6 1.088 624 189 628 079 2.03
7 1.088 627 323 631 528 2.00
8 1.088 627 323 651 719 1.48
9 1.088 627 323 651 718 1.00

Table C.1: Horizontal displacement of the top node and the convergence power
value. The significant digits are underlined.

C.4 Plane strain

The assumption of plane stress conditions in combination with a constant
element volume was used in the example in the previous section. In this
section, plane strain conditions are assumed. Hence, the volume of the element
is not constant and the rate of the volume ratio J is not equal to zero:

J̇

J
�= 0. (C.24)

The density of the material will change upon forming according to equation
(A.10). However, these density changes are often neglected in FE simulations,
in both the evaluation of the element stresses as well as in the evaluation of the
tangent matrix. This can cause a significant drop in the convergence speed.
Neglecting the density change results in

ρ̇

ρ
= 0 (C.25)

and the last two terms in equation (C.18) will not cancel out. This results in a
non-symmetric tangent matrix for the plane strain simulation. The consistent
tangent matrix consists of the symmetric part given by equation (C.20), from
which the neglected density change has to be subtracted. For the upper left
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Figure C.4: Convergence plot of the plane strain element test with and without
taking into account density changes.

part of the tangent matrix in the deformed state, this results in:

K[1:2,1:2] = eq. (C.20)−
∫

V
w
←
∇ : ρ̇

ρσ dV (C.26)

= eq. (C.20) +
∫

V
w
←
∇ : σ · tr (D) dV

[
2.354 −0.135
1.743 0.221

]
=
[

1.229 0.717
0.717 0.998

]
+
[

1.125 −0.852
1.026 −0.777

]
.

The simulation setup from section C.3 was used for two new simulations.
Now plane strain conditions were assumed instead of plane stress conditions.
The symmetric tangent, given by equation (C.20), was used in first simulation
and the consistent, non-symmetric tangent, was used in the second simulation.
Figure C.4 shows the convergence speed of both simulations. Neglecting the
density change causes the convergence speed to drop from quadratic to linear.
The number of iterations necessary to reach machine precision increased from
10 to 40. The results emphasise the importance of consistent tangents. Solving
large FE systems of equations is computationally expensive. Consistent
tangent matrices reduce the number of times the system of equations has
to be solved and hence the simulation times.



Appendix D

Uni-axial fibre model
including plasticity

A uni-axial fibre model for elastic deformations in finite element simulations
was developed in appendix C. In this appendix, plastic deformation is included
as well. The Cauchy stress and the consistent tangent matrix are derived for
arbitrarily sized plastic deformation increments and arbitrary hardening laws.
A one element example is given, in which quadratic convergence was proven
for a plastic strain increment around 100%.

D.1 Cauchy stress

The deformation gradient F is decomposed into a stretch tensor G and a
subsequent rotation R. The stretch tensor is split into a plastic part Gp and
an elastic part Ge.

F = R ·Ge ·Gp (D.1)

The decomposition is illustrated in figure D.1. Plastic deformation introduces
permanent strains. The fibre will not retain the original length �0 after
unloading, but will retract to the new stress free length �∗.

The total strain ε, the plastic strain εp and the elastic strain εp are expressed
in the fibre lengths and as a function of the total right Cauchy-Green strain
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Gp Ge R

τ σ

a0 a0a0

�∗
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�∗
�0
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�∗
� a

�0
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� = current length
�∗ = stress-free length
�0 = initial length

Figure D.1: Decomposition of the fibre deformation in a stretch part and a
subsequent rotation including plasticity.

tensor C.

ε =
�2 − �20

2�20
= 1

2a0a0 : (C− I) (D.2)

εp =
�2∗ − �20

2�20
= 1

2a0a0 :
(�2∗
�20

C− I
)

(D.3)

εe =
�2 − �2∗

2�2∗
= 1

2a0a0 :
(�20
�2∗

C− I
)

(D.4)

The total strain is not equal to the sum of the plastic and elastic strain due
to the nonlinear strain measure:

ε �= εe + εp. (D.5)

The scalar fibre stress τ� is expressed as:

τ� = α · εe, (D.6)

with

α =
ρE�2

ρ0�4∗
. (D.7)

The local stress tensor τ is given by:

τ =
τ�

�20
a0a0 (D.8)

=
ρE�2

2ρ0�4∗�20
a0a0a0a0 :

(�20
�2∗

C− I
)
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The Cauchy stress is found by rotating the local stress by the rotation tensor
R:

σ = R · τ ·RT . (D.9)

The nodal forces are then calculated from equation (B.1).

D.2 Consistent tangent

The consistent tangent is given by equation (B.3). Identical to the first steps
of section C.2, equation (B.3) is rewritten as:

w
←
∇ : σ̇−w

←
∇ · v

←
∇ : σ + w

←
∇ : σ J̇

J = w
←
∇ : Ṙ · τ ·RT︸ ︷︷ ︸

a

+ (D.10)

w
←
∇ : R · τ · ṘT︸ ︷︷ ︸

b

+w
←
∇ : R · τ̇ ·RT︸ ︷︷ ︸

c

−w
←
∇ · v

←
∇ : σ︸ ︷︷ ︸

d

+w
←
∇ : σ J̇

J︸ ︷︷ ︸
e

.

The parts a, b and d can be combined as shown in section C.2, equation (C.13)
and (C.14) to

a+ b+ d = −w
←
∇ : 2 �̇

� · σ︸ ︷︷ ︸
a3

+
→
∇w · v

←
∇ : σ︸ ︷︷ ︸

d1

. (D.11)

The local stress rate τ̇ is found by differentiating equation (D.8) with respect
to time:

τ̇ =
τ̇�

�20
a0a0 (D.12)

=
1
�20

a0a0(α̇ · εe + α · ε̇e)

= τ
( ρ̇
ρ

+
2�̇
�
− 6�̇∗

�∗

)
− �̇∗
�∗
ρE�2

ρ0�4∗
a0a0 +

ρE�2

2�6∗
a0a0a0a0 : Ċ,

with α̇ as

α̇ = α
( ρ̇
ρ

+
2�̇
�
− 4�̇∗

�∗

)
(D.13)

and ε̇e as

ε̇e = 1
2a0a0 :

(−2�20�∗
�3∗

C +
�20
�2∗

Ċ
)

(D.14)

=
�20
2�2∗

a0a0 : Ċ− �̇∗
�∗

(2εe + �20).
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The evaluation of part c now reads:

c = w
←
∇ : R · τ̇ ·R (D.15)

= w
←
∇ : σ

( ρ̇
ρ

+
2�̇
�

)
︸ ︷︷ ︸

c1

−w
←
∇ :

6�̇∗
�∗

σ︸ ︷︷ ︸
c2

−w
←
∇ :

�̇∗
�∗
ρE�20
ρ0�4∗

aa︸ ︷︷ ︸
c3

+

w
←
∇ :

ρE�20
2�6∗

aaa0a0 : Ċ︸ ︷︷ ︸
c4

.

By using the equality (A.10), it is shown that the combination of the parts
a3, c1 and e equals zero:

a3 + c1 + e = w
←
∇ : σ

(
− 2̇�

�
+
ρ̇

ρ
+

2�̇
�

+
J̇

J

)
(D.16)

= 0.

Using equation (A.7), the normalised rate of �∗ is expressed as:

�̇∗
�∗

=
1
�∗
· ∂�∗
∂�
· ∂�
∂t

(D.17)

=
1
��∗
· ∂�∗
∂�
· a ·D · a.

With equation (D.17) and (D.8) and the tensor operation given by (H.4), (H.5)
and (H.2), the parts c2, c3 and c4 are now written, respectively,

c2 = −w
←
∇ :

6�̇∗
�∗

σ (D.18)

= −ρE�
2
0

ρ0�6∗

�∗
�

∂�∗
∂�

6εe

�20

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
,

c3 = −w
←
∇ :

�̇∗
�∗
ρE�20
ρ0�4∗

aa (D.19)

= −ρE�
2
0

ρ0�6∗

�∗
�

∂�∗
∂�

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
,

c4 = w
←
∇ :

ρE�20
2�6∗

aaa0a0 : Ċ (D.20)

=
ρE�20
ρ0�6∗

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
.
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The expression for ∂�∗
∂� is found by starting with:

∂σy

∂�
=
∂σy

∂�∗
· ∂�∗
∂�

, (D.21)

which can be rewritten as
∂�∗
∂�

=
∂σy

∂�
·
(∂σy

∂�∗

)−1
(D.22)

=
∂σy

∂�
·
(∂σy

∂εp
· ∂εp

∂�∗

)−1
,

with the derivative of the plastic strain with respect to �∗ as

∂εp

∂�∗
=
�∗
�20
. (D.23)

The one-dimensional fibre stress τ� is equal to the yield stress σy during plastic
deformation. Their derivatives with respect to the driven length � are equal
as well:

∂σy

∂�
=
∂τ�

∂�
(D.24)

=
∂α

∂�
· εe + α

∂εe

∂�

=
(2α
�
− 4α
�∗
· ∂�∗
∂�

)
· εe + α

( �
�2∗
− �2

�3∗
· ∂�∗
∂�

)

=
2τ�

�
+
α�

�2∗
−
(4τ�

�∗
+
α�2

�3∗

)
· ∂�∗
∂�

.

Combining equation (D.22), (D.23), (D.24) results in

∂�∗
∂�

=

2τ�

�
+
α�

�2∗
∂σy

∂εp
+

4τ�

�∗
+
α�2

�3∗

, (D.25)

in which ∂σy

∂εp
is the input provided by the constitutive equations. Finally, the

consistent tangent is combined from the parts c2, c3, c4 and d1:

K =
∫

V

[
ρE�20
ρ0�6∗

(
1− �∗

�

∂�∗
∂�

(
1 + 6

εe

�20

))
· (D.26)

(
1
2(w

←
∇+

→
∇w) · aa

)
:
(
aa · 1

2(v
←
∇+

→
∇v)

)
+
→
∇w · v

←
∇ : σ

]
dV,

using equation (D.25) for ∂�∗
∂� . This tangent is valid for arbitrary hardening

laws.
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Figure D.2: Initial and final configurations of an element with one fibre family
with elasto-plastic deformation.

E [GPa] 3
σ0 [MPa] 30
C [MPa] 100
ε0 [-] 5·10−5

n [-] 0.6

Table D.1: Parameters of the Nadai stress-strain curve.

D.3 Application

The elasto-plastic material model has been implemented in Matlab c©. The
initial and final geometries of a one element performance test are shown in
figure D.2. The initial width, height and thickness of the element is 1 mm.
Plane stress conditions are assumed. The fibre is initially oriented at 45o with
respect to the x-axis. The applied force is 20 N. The fibre deforms according
to a Nadai stress-strain curve, in which the yield stress σy is given by:

σy = σ0 + C(ε0 + εp)n, (D.27)

with σ0, C, ε0 and n the parameters of the curve and εp the plastic strain.
The values of the parameters are be found in table D.1 and a plot of the stress
strain curve is found in figure 2.8. The material behavior is time independent.
The size of the plastic strain increments is solved iteratively, if the elastic limit
is exceeded. The derivative of the yield stress with respect to the plastic strain
εp is used in the consistent tangent and is given by:

∂σy

∂εp
= nC(ε0 + εp)n−1. (D.28)

The plastic strain reached 0.99 mm/mm. A convergence plot of this simulation
is given in figure D.3. The displacement of the top node and the convergence
power values are given in table D.2. The definition of the error norms and an
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Figure D.3: Convergence plot of the one element test including plasticity. The
slope n = 2 indicates quadratic convergence.

iteration u [mm] n

1 0.053 333 333 333 333 -
2 0.341 389 350 139 047 4.06
3 0.684 642 918 990 075 2.48
4 0.835 619 074 585 799 2.16
5 0.856 772 807 043 763 2.10
6 0.857 132 271 864 668 2.05
7 0.857 132 373 407 435 2.25
8 0.857 132 373 407 435 1.00

Table D.2: Displacement of the top node and the convergence power value.
The significant digits are underlined.

explanation of the convergence powers can be found in section C.2. The slope
of the graphs and the convergence power values from the table prove that the
convergence speed is quadratic.
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Appendix E

Generalised elastic
anisotropic material model

Hooke’s law states that stress increments are linearly coupled to strain
increments by a fourth order stiffness tensor 4E. The most general form of the
stiffness tensor contains 21 independent material constants. In this appendix,
a method is derived that gives the Cauchy stress, the finite element nodal
forces and the consistent tangent for a generalised anisotropic material. The
equations are expressed using a constant stiffness tensor, regardless of the size
of the deformation increments and the rigid rotations. A one element example
is given, in which quadratic convergence speed is shown for an orthotropic
material.

E.1 Cauchy stress

The deformation gradient F is decomposed in a stretch tensor G and a
subsequent rotation R. The local stress τ , the stress before rotation, of the
generalised anisotropic model is given by:

τ =
ρ

2ρ0
(G · 4I ·G) : 4E : (C− I), (E.1)

with ρ the density, 4E the fourth order material stiffness tensor and C the
right Cauchy-Green tensor. The Cauchy stress is found by rotating the local
stress tensor:

σ = R · τ ·RT . (E.2)

The Cauchy stress is used in the evaluation of the nodal forces, given by
equation (B.1).
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E.2 Consistent tangent

The consistent tangent matrix is given by equation (B.3). The rate of the
Cauchy stress with respect to time is given by equation (C.4). The consistent
tangent can now be written as the volume integral of the following five parts:

w
←
∇ : σ̇−w

←
∇ · v

←
∇ : σ + w

←
∇ : σ J̇

J = w
←
∇ : Ṙ · τ ·RT︸ ︷︷ ︸

a

+ (E.3)

w
←
∇ : R · τ · ṘT︸ ︷︷ ︸

b

+w
←
∇ : R · τ̇ ·RT︸ ︷︷ ︸

c

−w
←
∇ · v

←
∇ : σ︸ ︷︷ ︸

d

+w
←
∇ : σ J̇

J︸ ︷︷ ︸
e

.

With the arbitrary split of F into R · G, the rate of rotation tensor Ṙ is
expressed as:

Ṙ = L ·R−R · Lg, (E.4)

with L the velocity gradient and Lg the adapted velocity gradient defined as:

Lg = Ġ ·G−1. (E.5)

The rate of G is then given by:

Ġ = Lg ·G. (E.6)

Part a and b of equation (E.3) can now be written as:

a = w
←
∇ : (L · σ − Lg · σ) (E.7)

b = w
←
∇ : (σ · LT − σ · LT

g ).

Differentiating the local stress tensor τ from equation (E.1) results in

τ̇ =
ρ̇

ρ
τ + Lg · τ + τ · LT

g +
ρ

2ρ0
(G · 4I ·G) : 4E : Ċ. (E.8)

Part c of equation (E.3) is then written as:

c =
ρ̇

ρ
w
←
∇ : σ︸ ︷︷ ︸
c1

+w
←
∇ : Lg · σ︸ ︷︷ ︸

c2

+w
←
∇ : σ · LT

g︸ ︷︷ ︸
c3

+ (E.9)

ρ

2ρ0
w
←
∇ :

{
R ·

((
G · 4I ·G) : 4E : Ċ

)
·RT

}
︸ ︷︷ ︸

c4

.



Application 113

With the use of equations (A.16) and (H.3), c4 is rewritten as

c4 =
ρ

ρ0
w
←
∇ :

{
R ·

((
G · 4I ·G) : 4E : FT ·D · F

)
·RT

}
(E.10)

=
ρ

ρ0
w
←
∇ :

(
F · 4I · F) : 4E :

(
FT · 4I · FT

)
: D.

The sum of c1 and e is equal to zero, (A.10),

c1 + e = ρ̇
ρw
←
∇ : σ + w

←
∇ : σ J̇

J (E.11)

= 0.

The remaining terms can be rewritten using (H.1) and (H.2),

a+ b+ c2 + c3 + d = w
←
∇ : (L · σ + σ · LT ) + w

←
∇ · v

←
∇ : σ (E.12)

=
→
∇w · v

←
∇ : σ.

The consistent tangent matrix for the generalised anisotropic model follows
by the addition of (E.10) and (E.12),

K =
∫

V

[
ρ

ρ0
· 1

2(w
←
∇+

→
∇w) :

(
F · 4I · F) : 4E : (E.13)

(
FT · 4I · FT

)
: 1

2

(
v
←
∇+

→
∇v

)
+
→
∇w · v

←
∇ : σ

]
dV.

E.3 Application

The generalised anisotropic material model has been implemented in
Matlab c©. Figure E.1 shows the initial and final deformed shapes of a
one element simulation with an orthotropic material model. An orthotropic
material has nine independent material parameters. Plane stress conditions
are assumed and only in-plane behavior is of interest. These assumptions
reduce the total number of independent material parameters to four:
E1 = 10 MPa, E2 = 1 MPa, G12 = 0.5 MPa and ν12 = 0.33. The principal
stiffness directions coincide with the axes of the coordinate system, as indicated
in figure E.1. The initial width, height and thickness of the element is 1 mm
and the applied force was 0.75 N. The triangle has a linear displacement field.

A convergence plot of this simulation is given in figure E.2. The horizontal
displacement of the top node and the convergence power values are given
in table E.1. The definition of the error norms and an explanation of the
convergence powers were introduced in section C.2. The slope of the graphs
and the convergence power values from the table prove that the convergence
speed is quadratic for this example with an orthotropic material model.
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Figure E.1: Initial and final configurations.
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Figure E.2: Convergence plot of the one element test. The slope n = 2
indicates quadratic convergence.

iteration u [mm] n

1 2.834 437 532 386 275 -
2 1.905 639 849 410 504 1.32
3 1.344 467 756 660 898 1.29
4 1.003 647 611 982 085 1.61
5 0.860 380 926 041 880 2.28
6 0.844 556 443 852 118 2.10
7 0.844 358 701 391 119 2.05
8 0.844 358 670 901 146 2.00
9 0.844 358 670 901 145 1.05

Table E.1: Horizontal displacement of the top node and the convergence power
value. The significant digits are underlined.



Appendix F

Mooney-Rivlin material
model

The Mooney-Rivlin (MR) material model is a generalisation of the neo-
Hookean material model. The non-linear stress-strain response of the MR
material model is widely used to model the response of (nearly incompressible)
rubber-like solids and polymers. The Cauchy stress and the consistent tangent
matrices of the MR material model are presented in this section. An example
is given, where a cube of a MR material is compressed to half of the original
height. This simulation shows quadratic convergence, proving the consistency
of the tangents derived.

F.1 Cauchy stress

The stress state of a Mooney-Rivlin material is given by [1]

σ =
g0
J

(J − 1)I︸ ︷︷ ︸
σa

+
g1
J

(B− I)︸ ︷︷ ︸
σb

+
g2
J

(B−1 − I)︸ ︷︷ ︸
σc

, (F.1)

in which g0, g1 and g2 are the material parameters, J is the volume ratio and
B is the left Cauchy-Green strain tensor given by:

B = F · FT . (F.2)

The Cauchy stress is used in the evaluation of the nodal forces, given by
equation (B.1).
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F.2 Consistent tangent

The starting point is equation (B.3):

K =
∫

V
w
←
∇ : σ̇ dV −

∫
V

w
←
∇ · v

←
∇ : σ dV +

∫
V

w
←
∇ : σ J̇

J dV. (F.3)

This equation will be evaluated for the three stress components σa, σb and
σc of equation (F.1) individually, in turn leading to three components in the
tangent matrix,

K = Ka +Kb +Kc. (F.4)

The rate of the stress component σa is given by

σ̇a = − J̇
J

σa +
J̇

J
g0 I. (F.5)

The tangent matrix (F.3) for this stress component is found using equations
(A.5), (A.11), (H.2) and (H.6),

Ka =
∫

V

[
g0 · 1

2(w
←
∇+

→
∇w) : II : 1

2(v
←
∇+

→
∇v)−w

←
∇ · v

←
∇ : σa

]
dV. (F.6)

The rate of the stress component σb reads

σ̇b = − J̇
J

σb +
g1
J

Ḃ (F.7)

= − J̇
J

σb +
g1
J

(
L ·B + B · LT

)

= − J̇
J

σb + L · σb + σb · LT +
2g1
J

D,

in which equation (A.14) was used. The tangent matrix (F.3) of part b is now
elaborated using a similar procedure as for (F.6), resulting in

Kb =
∫

V

[2g1
J
· 1

2(w
←
∇+

→
∇w) : 1

2(v
←
∇+

→
∇v) +

→
∇w · v

←
∇ : σb

]
dV. (F.8)

Using equation (A.15), the rate of the stress component σc is expressed as:

σ̇c = − J̇
J

σc +
g2
J

Ḃ
−1

(F.9)

= − J̇
J

σb +
g2
J

( −B−1 · L− LT ·B−1
)

= − J̇
J

σb − σc · L− LT · σc − 2g2
J

D.
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node 1

node 1

Figure F.1: Compression of a cube to 50% of the original height. The cube is
meshed with six 10-node quadratic tetrahedrons.

An elaboration of (F.3) similar to the procedure as used for (F.6), results in
the tangent for this component,

Kc =
∫

V

[
− 2g2

J
· 1

2(w
←
∇+

→
∇w) : 1

2(v
←
∇+

→
∇v)− (F.10)

(
w
←
∇ ·

→
∇v +

→
∇w ·

→
∇v + w

←
∇ · v

←
∇
)

: σc

]
dV.

The complete tangent is found by evaluating equation (F.4).

F.3 Application

The Mooney-Rivlin model has been implemented in 10-node quadratic
tetrahedron elements, using Matlab c©. Figure F.1 shows the initial and
final configurations of an example, in which a cube is compressed to 50%
of the original height. The cube is meshed with 6 elements. The initial
size of the cube is 1 mm. The Mooney-Rivlin parameters are g0 = 1.0 MPa,
g1 = 0.0315 MPa and g2 = -0.0415 MPa [2].

The simulation converged to machine precision within eight iterations. The
convergence behaviour of the simulation does not depend on the initial size
of the cube, only on the ratio of compression. The convergence speed of
the simulation is plotted in figure F.2. The vertical displacement and the
convergence power values of node one are given in table F.1. Node one is
indicated in figure F.1. The error norms and an explanation of the convergence
powers were introduced in section C.2. The slope of the graphs and the
convergence power values from the table show that the convergence rate is
quadratic.
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Figure F.2: Convergence plot of the compression of a rubber cube. The slope
n = 2 indicates quadratic convergence.

iteration u [mm] n

1 -0.260 686 309 183 553 -
2 -0.244 368 257 447 417 1.06
3 -0.255 314 031 414 305 2.18
4 -0.253 851 874 881 629 1.80
5 -0.253 774 065 876 776 2.07
6 -0.253 774 005 340 125 1.88
7 -0.253 774 005 340 036 1.32
8 -0.253 774 005 340 036 1.00

Table F.1: Vertical displacement of node 1 and the convergence power value.
The significant digits are underlined.
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Appendix G

Uniform surface pressure on
planar three node elements

The consistent linearisation of boundary conditions can decrease simulation
times significantly. This section discusses uniform surface pressures on planar
three node elements. The resulting nodal forces are given, as well as the
consistent linearisation of these forces with respect to the nodal displacements.
The inflation of a rubber ball was simulated and the results are presented at
the end of the section. The simulation shows quadratic convergence, proving
the consistency of the tangent.

G.1 Nodal forces

The total force Fp, exerted by a uniform pressure p on the face of a planar
membrane element is given by

Fp = p ·A, (G.1)

in which A denotes the surface area of the element. The exerted force is
equally distributed among the nodes for the three node planar element. The
nodal force vector F is therefore given by

F = −n · 1
3Fp, (G.2)

where n denotes the normal on the element.

G.2 Consistent tangent

The element is first rotated from the global coordinate system to the xy-plane
by the rotation tensor R. This rotation is depicted in figure G.1, in which
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Figure G.1: Rotation of the element from the three dimensional space to the
xy-plane and back.

c∗ are the rotated coordinate vectors of the nodes. The rotated normal n∗

now points in the z-direction. The rotated situation will be referred to as the
local coordinate system, indicated by the asterisk. The next step is to derive
the local tangent matrix K∗. The global tangent K is subsequently found by
rotating the local stiffness matrix to the global coordinate system,

K = RT ·K∗ ·R. (G.3)

The local force vector F∗ is needed to find the local tangent matrix K∗.
This local force vector as a result of the uniform pressure p is given by

F∗ = −1
3Fp · n∗, (G.4)

in which Fp is given by equation (G.1). The rate form of (G.4) reads

Ḟ
∗

= − 1
3Fp · ṅ∗︸ ︷︷ ︸

a

− 1
3Fp · n∗ · Ȧ

A︸ ︷︷ ︸
b

. (G.5)

Part a contains the rate of the local normal n∗. This rate can be found by
expressing the normal in the local coordinates:

n∗ =
1
L

s∗1 × s∗2, (G.6)

in which the vectors s∗1 and s∗2 are the direction vectors of two element sides.
These vectors are expressed using the coordinate vectors c∗ of the nodes,

s∗1 = c∗2 − c∗1 (G.7)
s∗2 = c∗3 − c∗1.
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The nodal coordinate vectors c∗ are shown in figure G.1. The length L is given
by:

L = ‖s∗1 × s∗2‖. (G.8)

The first order derivative of the local normal n∗ depends on the nodal
displacements in the z-direction only and not on the in-plane displacements.
This is an advantage of rotating the element to the xy-plane first. The length
change of L is a second order effect as well. The rate of n∗ follows from
equation (G.6),

∂n∗
∂w∗1

=
1
L

⎧⎨
⎩

y∗3 − y∗2
x∗2 − x∗3

0

⎫⎬
⎭ , (G.9)

in which w∗1 is the local displacement in the z-direction of the first node and
x∗i and y∗i are the local nodal coordinates. The derivatives with respect to the
vertical displacements of the other nodes can be derived similarly.

Part b of equation (G.5) is evaluated using equation (A.11),

b = −1
3Fp · n∗ · tr (D∗), (G.10)

in which D∗ denotes the rate of deformation tensor.

The local tangent matrix (G.5) is found by combining (G.9) and (G.10). The
global tangent matrix, equation (G.3), with respect to the displacements of
the first node, is hence given by

K = −Fp

3
·RT ·

⎡
⎣ 0 0 1

L(y∗3 − y∗2)
0 0 1

L(x∗2 − x∗3)
tr (D∗) tr (D∗) 0

⎤
⎦ ·R. (G.11)

The tangent matrices with respect to the displacements of the other nodes can
be derived similarly.

G.3 Application

A linear, three node membrane element including a uniform surface pressure
has been implemented in Matlab c©. An example of the inflation of a thin-
walled rubber ball will be presented in this section. The initial and final
geometries are shown in figure G.2. The initial radius of the ball is 50 mm
and the wall thickness is 3 mm. The ball is meshed with 320 linear membrane
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Figure G.2: A thin-walled rubber ball in the initial and inflated state.
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Figure G.3: Convergence plot of the inflated ball example. The slope n = 2
indicates quadratic convergence.

elements. The volume of the elements remains constant and plane stress
conditions are assumed. The rubber material is modelled using a Mooney-
Rivlin material model as introduced in appendix F, with g1 = 3 MPa and
g2 = 1 MPa. The parameter g0 is redundant in this case, due to the constant
volume assumption. Inertia was included to avoid rigid body motions that
introduce singularities. The density of the material was set to 1500 kg/m3.
The internal pressure was set to 0.5 bar. The radius of the ball increased from
50 to 77.1 mm during pressurisation.
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iteration u [mm] n

1 180.017 437 433 241 -
2 112.000 643 619 285 0.91
3 68.276 616 473 731 0.98
4 41.858 938 478 218 1.36
5 28.780 789 031 673 2.07
6 26.103 073 655 063 2.10
7 27.075 399 952 663 1.81
8 27.113 572 866 349 1.91
9 27.114 057 744 545 1.94

10 27.114 057 802 066 1.22
11 27.114 057 802 902 1.04
12 27.114 057 802 242 0.97

Table G.1: Radial displacement of node 1 an the convergence power value.
The significant digits are underlined.

Figure G.3 shows the convergence plot of this simulation, using only the
material tangent and including the linearisation for the uniform pressure as
derived in the previous section. The radial displacement of node 1 and the
convergence power values are given in table G.1. The consistent tangent takes
into account the increase in nodal forces due to the increase in surface area.
This explains the large displacements found in the first iteration. A radial
expansion of the ball increases the surface area and hence the total force
exerted by the pressure, while there is (yet) no membrane tension present
to restrain this expansion. Membrane stresses are present from the second
iteration on and the radial displacement converges to the final value.

The simulation using only the material tangent converges much slower,
despite the lower overshoot in the first iteration. The maximum number of
significant digits obtained is 11. This is probably due to the calculation of
the inverse matrices of the left Cauchy-Green strain tensor B, used in the
Mooney-Rivlin material model. Significant digits are lost in this process and
the maximum number of 15 significant digits cannot be obtained.
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Appendix H

Tensor algebra

Tensor and vector operations are indispensable in the mathematical
description of mechanics and dynamics. They are well covered in literature. A
formal and extensive overview can be found in the work of Bowen and Wang
[1, 2]. The work of Heinbockel [3] provides a good introduction to tensor
calculus. This appendix contains only a number of tensor operations that
were frequently used in this thesis.

The following nomenclature is used:
a scalar
a vector
A second order tensor

nA nth order tensor
As symmetric tensor

The following six tensor operations can be easily derived in index notation.

A : (B ·C) = (AT ·B) : CT (H.1)

= CT : (AT ·B)

= (C ·AT ) : B

A : Bs = AT : Bs (H.2)

= 1
2(A + AT ) : Bs

(A · 4I ·C) : B = A ·B ·CT (H.3)



126 Appendix H. Tensor algebra

aaaa : Bs = aa ·Bs · aa (H.4)

B : (aa ·C · aa) = (B · aa) : (aa ·C) (H.5)

tr (A) = I : A (H.6)
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Nawoord

Dit proefschrift is het resultaat van het werk dat ik uitgevoerd heb in de
periode tussen september 2002 en september 2007. Het eerste deel van dit
onderzoek is in deeltijd uitgevoerd, zodat ik tijd kon besteden aan mijn
favoriete sport: roeien. Dit was niet mogelijk geweest zonder de medewerking
van de Universiteit Twente en mijn promotor, Remko Akkerman. Gelukkig
dragen beiden dit soort persoonlijke ontwikkelingen een warm hart toe, iets
waarvan ik tijdens mijn studententijd ook al dankbaar gebruik heb gemaakt.
Bedankt hiervoor.

De inzet en het enthousiasme van mijn promotoren Remko Akkerman en
Han Huétink heeft er zeker aan bijgedragen dat ik deze belangrijke periode
in mijn carrière met een goed gevoel en een goed resultaat afsluit. Hun
open-deur-mentaliteit heb ik hierbij zeer gewaardeerd. Remko, als begeleider,
bedankt voor de sturing en motivatie, vooral op de momenten dat het allemaal
even vast leek te zitten.

Het dagelijkse plezier op het werk wordt natuurlijk voor een groot deel
bepaald door de collega’s. Collega’s, ik heb zeer genoten van de koffiepauzes,
borrels en mountainbike uitjes die we samen ondernomen hebben. Uit deze
groep collega’s wil ik een aantal mensen in het bijzonder noemen. Edwin
Lamers, Sebastiaan Wijskamp en Richard Loendersloot, natuurlijk bedankt
voor jullie input op sociaal gebied, maar ik weet zeker dat de discussies over
onze onderzoeken ons allemaal vooruit geholpen hebben. Laurent Warnet,
bedankt voor je inhoudelijke advies bij het schrijven van dit proefschrift en je
hulp bij het opzetten en uitvoeren van experimenten. Ik wil ook zeker Ashok
Sridhar niet vergeten te bedanken voor zijn spellings- en grammaticacorrecties
van dit proefschrift.

Door het onderwerp van mijn onderzoek, eindige-elementensimulaties, stond
ik ook met één been in de DiekA-groep. DiekA is de naam van het eindige-
elementenpakket dat door deze groep ontwikkeld wordt en deze dame is



tevens de grootste concurrent van menig promovenduspartner. Hoewel de
besprekingen op vrijdagochtend plaats vonden, leverden ze veel informatie,
bruikbare tips en ideeën op. Van de DiekA-groep wil ik naast Han Huétink
vooral Timo Meinders, Bert Geijselaers en Ton van de Boogaard bedanken
voor hun hulp en adviezen. Daarnaast waren de Esaform-conferenties met
de DiekA-groep ook altijd een groot succes. Onze roadtrips door Schotland
en Spanje zal ik niet snel vergeten.

Velen hebben in de afgelopen vijf jaar een bijgedrage geleverd aan mijn
onderzoek, direct of indirect. Een complete lijst hiervan geven is praktisch
ondoenlijk, dus nu komt de vraag waar de lijst gaat stoppen. In ieder geval niet
voor ik de volgende mensen genoemd heb. Tanja, Belinda en Debbie, bedankt
voor het afhandelen van de papierwinkels die altijd maar weer opduiken.
Dankzij jullie heb ik er vaak niet zoveel van gemerkt. Ook een flink aantal
studenten heeft een bijdrage geleverd aan het onderzoek. De bijdragen van
Lieuwe van de Meer en Sebastiaan Haanappel wil ik hierbij apart noemen,
omdat deze direct verwerkt zijn in dit proefschrift. Daarnaast wil ik Michael
Wielant van Stork Fokker AESP bedanken voor zijn medewerking en hulp bij
het uitvoeren van experimenten.

En natuurlijk, last but not least on the list, mijn zonnetje Marijke. Vooral,
omdat je er altijd voor me bent.

René ten Thije
Enschede, september 2007
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